Cargando…
A mathematical model of metabolism and regulation provides a systems-level view of how Escherichia coli responds to oxygen
The efficient redesign of bacteria for biotechnological purposes, such as biofuel production, waste disposal or specific biocatalytic functions, requires a quantitative systems-level understanding of energy supply, carbon, and redox metabolism. The measurement of transcript levels, metabolite concen...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3973912/ https://www.ncbi.nlm.nih.gov/pubmed/24723921 http://dx.doi.org/10.3389/fmicb.2014.00124 |
_version_ | 1782479393501741056 |
---|---|
author | Ederer, Michael Steinsiek, Sonja Stagge, Stefan Rolfe, Matthew D. Ter Beek, Alexander Knies, David Teixeira de Mattos, M. Joost Sauter, Thomas Green, Jeffrey Poole, Robert K. Bettenbrock, Katja Sawodny, Oliver |
author_facet | Ederer, Michael Steinsiek, Sonja Stagge, Stefan Rolfe, Matthew D. Ter Beek, Alexander Knies, David Teixeira de Mattos, M. Joost Sauter, Thomas Green, Jeffrey Poole, Robert K. Bettenbrock, Katja Sawodny, Oliver |
author_sort | Ederer, Michael |
collection | PubMed |
description | The efficient redesign of bacteria for biotechnological purposes, such as biofuel production, waste disposal or specific biocatalytic functions, requires a quantitative systems-level understanding of energy supply, carbon, and redox metabolism. The measurement of transcript levels, metabolite concentrations and metabolic fluxes per se gives an incomplete picture. An appreciation of the interdependencies between the different measurement values is essential for systems-level understanding. Mathematical modeling has the potential to provide a coherent and quantitative description of the interplay between gene expression, metabolite concentrations, and metabolic fluxes. Escherichia coli undergoes major adaptations in central metabolism when the availability of oxygen changes. Thus, an integrated description of the oxygen response provides a benchmark of our understanding of carbon, energy, and redox metabolism. We present the first comprehensive model of the central metabolism of E. coli that describes steady-state metabolism at different levels of oxygen availability. Variables of the model are metabolite concentrations, gene expression levels, transcription factor activities, metabolic fluxes, and biomass concentration. We analyze the model with respect to the production capabilities of central metabolism of E. coli. In particular, we predict how precursor and biomass concentration are affected by product formation. |
format | Online Article Text |
id | pubmed-3973912 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-39739122014-04-10 A mathematical model of metabolism and regulation provides a systems-level view of how Escherichia coli responds to oxygen Ederer, Michael Steinsiek, Sonja Stagge, Stefan Rolfe, Matthew D. Ter Beek, Alexander Knies, David Teixeira de Mattos, M. Joost Sauter, Thomas Green, Jeffrey Poole, Robert K. Bettenbrock, Katja Sawodny, Oliver Front Microbiol Microbiology The efficient redesign of bacteria for biotechnological purposes, such as biofuel production, waste disposal or specific biocatalytic functions, requires a quantitative systems-level understanding of energy supply, carbon, and redox metabolism. The measurement of transcript levels, metabolite concentrations and metabolic fluxes per se gives an incomplete picture. An appreciation of the interdependencies between the different measurement values is essential for systems-level understanding. Mathematical modeling has the potential to provide a coherent and quantitative description of the interplay between gene expression, metabolite concentrations, and metabolic fluxes. Escherichia coli undergoes major adaptations in central metabolism when the availability of oxygen changes. Thus, an integrated description of the oxygen response provides a benchmark of our understanding of carbon, energy, and redox metabolism. We present the first comprehensive model of the central metabolism of E. coli that describes steady-state metabolism at different levels of oxygen availability. Variables of the model are metabolite concentrations, gene expression levels, transcription factor activities, metabolic fluxes, and biomass concentration. We analyze the model with respect to the production capabilities of central metabolism of E. coli. In particular, we predict how precursor and biomass concentration are affected by product formation. Frontiers Media S.A. 2014-03-27 /pmc/articles/PMC3973912/ /pubmed/24723921 http://dx.doi.org/10.3389/fmicb.2014.00124 Text en Copyright © 2014 Ederer, Steinsiek, Stagge, Rolfe, Ter Beek, Knies, Teixeira de Mattos, Sauter, Green, Poole, Bettenbrock and Sawodny. http://creativecommons.org/licenses/by/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Microbiology Ederer, Michael Steinsiek, Sonja Stagge, Stefan Rolfe, Matthew D. Ter Beek, Alexander Knies, David Teixeira de Mattos, M. Joost Sauter, Thomas Green, Jeffrey Poole, Robert K. Bettenbrock, Katja Sawodny, Oliver A mathematical model of metabolism and regulation provides a systems-level view of how Escherichia coli responds to oxygen |
title | A mathematical model of metabolism and regulation provides a systems-level view of how Escherichia coli responds to oxygen |
title_full | A mathematical model of metabolism and regulation provides a systems-level view of how Escherichia coli responds to oxygen |
title_fullStr | A mathematical model of metabolism and regulation provides a systems-level view of how Escherichia coli responds to oxygen |
title_full_unstemmed | A mathematical model of metabolism and regulation provides a systems-level view of how Escherichia coli responds to oxygen |
title_short | A mathematical model of metabolism and regulation provides a systems-level view of how Escherichia coli responds to oxygen |
title_sort | mathematical model of metabolism and regulation provides a systems-level view of how escherichia coli responds to oxygen |
topic | Microbiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3973912/ https://www.ncbi.nlm.nih.gov/pubmed/24723921 http://dx.doi.org/10.3389/fmicb.2014.00124 |
work_keys_str_mv | AT ederermichael amathematicalmodelofmetabolismandregulationprovidesasystemslevelviewofhowescherichiacolirespondstooxygen AT steinsieksonja amathematicalmodelofmetabolismandregulationprovidesasystemslevelviewofhowescherichiacolirespondstooxygen AT staggestefan amathematicalmodelofmetabolismandregulationprovidesasystemslevelviewofhowescherichiacolirespondstooxygen AT rolfematthewd amathematicalmodelofmetabolismandregulationprovidesasystemslevelviewofhowescherichiacolirespondstooxygen AT terbeekalexander amathematicalmodelofmetabolismandregulationprovidesasystemslevelviewofhowescherichiacolirespondstooxygen AT kniesdavid amathematicalmodelofmetabolismandregulationprovidesasystemslevelviewofhowescherichiacolirespondstooxygen AT teixeirademattosmjoost amathematicalmodelofmetabolismandregulationprovidesasystemslevelviewofhowescherichiacolirespondstooxygen AT sauterthomas amathematicalmodelofmetabolismandregulationprovidesasystemslevelviewofhowescherichiacolirespondstooxygen AT greenjeffrey amathematicalmodelofmetabolismandregulationprovidesasystemslevelviewofhowescherichiacolirespondstooxygen AT poolerobertk amathematicalmodelofmetabolismandregulationprovidesasystemslevelviewofhowescherichiacolirespondstooxygen AT bettenbrockkatja amathematicalmodelofmetabolismandregulationprovidesasystemslevelviewofhowescherichiacolirespondstooxygen AT sawodnyoliver amathematicalmodelofmetabolismandregulationprovidesasystemslevelviewofhowescherichiacolirespondstooxygen AT ederermichael mathematicalmodelofmetabolismandregulationprovidesasystemslevelviewofhowescherichiacolirespondstooxygen AT steinsieksonja mathematicalmodelofmetabolismandregulationprovidesasystemslevelviewofhowescherichiacolirespondstooxygen AT staggestefan mathematicalmodelofmetabolismandregulationprovidesasystemslevelviewofhowescherichiacolirespondstooxygen AT rolfematthewd mathematicalmodelofmetabolismandregulationprovidesasystemslevelviewofhowescherichiacolirespondstooxygen AT terbeekalexander mathematicalmodelofmetabolismandregulationprovidesasystemslevelviewofhowescherichiacolirespondstooxygen AT kniesdavid mathematicalmodelofmetabolismandregulationprovidesasystemslevelviewofhowescherichiacolirespondstooxygen AT teixeirademattosmjoost mathematicalmodelofmetabolismandregulationprovidesasystemslevelviewofhowescherichiacolirespondstooxygen AT sauterthomas mathematicalmodelofmetabolismandregulationprovidesasystemslevelviewofhowescherichiacolirespondstooxygen AT greenjeffrey mathematicalmodelofmetabolismandregulationprovidesasystemslevelviewofhowescherichiacolirespondstooxygen AT poolerobertk mathematicalmodelofmetabolismandregulationprovidesasystemslevelviewofhowescherichiacolirespondstooxygen AT bettenbrockkatja mathematicalmodelofmetabolismandregulationprovidesasystemslevelviewofhowescherichiacolirespondstooxygen AT sawodnyoliver mathematicalmodelofmetabolismandregulationprovidesasystemslevelviewofhowescherichiacolirespondstooxygen |