Cargando…

A mathematical model of metabolism and regulation provides a systems-level view of how Escherichia coli responds to oxygen

The efficient redesign of bacteria for biotechnological purposes, such as biofuel production, waste disposal or specific biocatalytic functions, requires a quantitative systems-level understanding of energy supply, carbon, and redox metabolism. The measurement of transcript levels, metabolite concen...

Descripción completa

Detalles Bibliográficos
Autores principales: Ederer, Michael, Steinsiek, Sonja, Stagge, Stefan, Rolfe, Matthew D., Ter Beek, Alexander, Knies, David, Teixeira de Mattos, M. Joost, Sauter, Thomas, Green, Jeffrey, Poole, Robert K., Bettenbrock, Katja, Sawodny, Oliver
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3973912/
https://www.ncbi.nlm.nih.gov/pubmed/24723921
http://dx.doi.org/10.3389/fmicb.2014.00124
_version_ 1782479393501741056
author Ederer, Michael
Steinsiek, Sonja
Stagge, Stefan
Rolfe, Matthew D.
Ter Beek, Alexander
Knies, David
Teixeira de Mattos, M. Joost
Sauter, Thomas
Green, Jeffrey
Poole, Robert K.
Bettenbrock, Katja
Sawodny, Oliver
author_facet Ederer, Michael
Steinsiek, Sonja
Stagge, Stefan
Rolfe, Matthew D.
Ter Beek, Alexander
Knies, David
Teixeira de Mattos, M. Joost
Sauter, Thomas
Green, Jeffrey
Poole, Robert K.
Bettenbrock, Katja
Sawodny, Oliver
author_sort Ederer, Michael
collection PubMed
description The efficient redesign of bacteria for biotechnological purposes, such as biofuel production, waste disposal or specific biocatalytic functions, requires a quantitative systems-level understanding of energy supply, carbon, and redox metabolism. The measurement of transcript levels, metabolite concentrations and metabolic fluxes per se gives an incomplete picture. An appreciation of the interdependencies between the different measurement values is essential for systems-level understanding. Mathematical modeling has the potential to provide a coherent and quantitative description of the interplay between gene expression, metabolite concentrations, and metabolic fluxes. Escherichia coli undergoes major adaptations in central metabolism when the availability of oxygen changes. Thus, an integrated description of the oxygen response provides a benchmark of our understanding of carbon, energy, and redox metabolism. We present the first comprehensive model of the central metabolism of E. coli that describes steady-state metabolism at different levels of oxygen availability. Variables of the model are metabolite concentrations, gene expression levels, transcription factor activities, metabolic fluxes, and biomass concentration. We analyze the model with respect to the production capabilities of central metabolism of E. coli. In particular, we predict how precursor and biomass concentration are affected by product formation.
format Online
Article
Text
id pubmed-3973912
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-39739122014-04-10 A mathematical model of metabolism and regulation provides a systems-level view of how Escherichia coli responds to oxygen Ederer, Michael Steinsiek, Sonja Stagge, Stefan Rolfe, Matthew D. Ter Beek, Alexander Knies, David Teixeira de Mattos, M. Joost Sauter, Thomas Green, Jeffrey Poole, Robert K. Bettenbrock, Katja Sawodny, Oliver Front Microbiol Microbiology The efficient redesign of bacteria for biotechnological purposes, such as biofuel production, waste disposal or specific biocatalytic functions, requires a quantitative systems-level understanding of energy supply, carbon, and redox metabolism. The measurement of transcript levels, metabolite concentrations and metabolic fluxes per se gives an incomplete picture. An appreciation of the interdependencies between the different measurement values is essential for systems-level understanding. Mathematical modeling has the potential to provide a coherent and quantitative description of the interplay between gene expression, metabolite concentrations, and metabolic fluxes. Escherichia coli undergoes major adaptations in central metabolism when the availability of oxygen changes. Thus, an integrated description of the oxygen response provides a benchmark of our understanding of carbon, energy, and redox metabolism. We present the first comprehensive model of the central metabolism of E. coli that describes steady-state metabolism at different levels of oxygen availability. Variables of the model are metabolite concentrations, gene expression levels, transcription factor activities, metabolic fluxes, and biomass concentration. We analyze the model with respect to the production capabilities of central metabolism of E. coli. In particular, we predict how precursor and biomass concentration are affected by product formation. Frontiers Media S.A. 2014-03-27 /pmc/articles/PMC3973912/ /pubmed/24723921 http://dx.doi.org/10.3389/fmicb.2014.00124 Text en Copyright © 2014 Ederer, Steinsiek, Stagge, Rolfe, Ter Beek, Knies, Teixeira de Mattos, Sauter, Green, Poole, Bettenbrock and Sawodny. http://creativecommons.org/licenses/by/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Microbiology
Ederer, Michael
Steinsiek, Sonja
Stagge, Stefan
Rolfe, Matthew D.
Ter Beek, Alexander
Knies, David
Teixeira de Mattos, M. Joost
Sauter, Thomas
Green, Jeffrey
Poole, Robert K.
Bettenbrock, Katja
Sawodny, Oliver
A mathematical model of metabolism and regulation provides a systems-level view of how Escherichia coli responds to oxygen
title A mathematical model of metabolism and regulation provides a systems-level view of how Escherichia coli responds to oxygen
title_full A mathematical model of metabolism and regulation provides a systems-level view of how Escherichia coli responds to oxygen
title_fullStr A mathematical model of metabolism and regulation provides a systems-level view of how Escherichia coli responds to oxygen
title_full_unstemmed A mathematical model of metabolism and regulation provides a systems-level view of how Escherichia coli responds to oxygen
title_short A mathematical model of metabolism and regulation provides a systems-level view of how Escherichia coli responds to oxygen
title_sort mathematical model of metabolism and regulation provides a systems-level view of how escherichia coli responds to oxygen
topic Microbiology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3973912/
https://www.ncbi.nlm.nih.gov/pubmed/24723921
http://dx.doi.org/10.3389/fmicb.2014.00124
work_keys_str_mv AT ederermichael amathematicalmodelofmetabolismandregulationprovidesasystemslevelviewofhowescherichiacolirespondstooxygen
AT steinsieksonja amathematicalmodelofmetabolismandregulationprovidesasystemslevelviewofhowescherichiacolirespondstooxygen
AT staggestefan amathematicalmodelofmetabolismandregulationprovidesasystemslevelviewofhowescherichiacolirespondstooxygen
AT rolfematthewd amathematicalmodelofmetabolismandregulationprovidesasystemslevelviewofhowescherichiacolirespondstooxygen
AT terbeekalexander amathematicalmodelofmetabolismandregulationprovidesasystemslevelviewofhowescherichiacolirespondstooxygen
AT kniesdavid amathematicalmodelofmetabolismandregulationprovidesasystemslevelviewofhowescherichiacolirespondstooxygen
AT teixeirademattosmjoost amathematicalmodelofmetabolismandregulationprovidesasystemslevelviewofhowescherichiacolirespondstooxygen
AT sauterthomas amathematicalmodelofmetabolismandregulationprovidesasystemslevelviewofhowescherichiacolirespondstooxygen
AT greenjeffrey amathematicalmodelofmetabolismandregulationprovidesasystemslevelviewofhowescherichiacolirespondstooxygen
AT poolerobertk amathematicalmodelofmetabolismandregulationprovidesasystemslevelviewofhowescherichiacolirespondstooxygen
AT bettenbrockkatja amathematicalmodelofmetabolismandregulationprovidesasystemslevelviewofhowescherichiacolirespondstooxygen
AT sawodnyoliver amathematicalmodelofmetabolismandregulationprovidesasystemslevelviewofhowescherichiacolirespondstooxygen
AT ederermichael mathematicalmodelofmetabolismandregulationprovidesasystemslevelviewofhowescherichiacolirespondstooxygen
AT steinsieksonja mathematicalmodelofmetabolismandregulationprovidesasystemslevelviewofhowescherichiacolirespondstooxygen
AT staggestefan mathematicalmodelofmetabolismandregulationprovidesasystemslevelviewofhowescherichiacolirespondstooxygen
AT rolfematthewd mathematicalmodelofmetabolismandregulationprovidesasystemslevelviewofhowescherichiacolirespondstooxygen
AT terbeekalexander mathematicalmodelofmetabolismandregulationprovidesasystemslevelviewofhowescherichiacolirespondstooxygen
AT kniesdavid mathematicalmodelofmetabolismandregulationprovidesasystemslevelviewofhowescherichiacolirespondstooxygen
AT teixeirademattosmjoost mathematicalmodelofmetabolismandregulationprovidesasystemslevelviewofhowescherichiacolirespondstooxygen
AT sauterthomas mathematicalmodelofmetabolismandregulationprovidesasystemslevelviewofhowescherichiacolirespondstooxygen
AT greenjeffrey mathematicalmodelofmetabolismandregulationprovidesasystemslevelviewofhowescherichiacolirespondstooxygen
AT poolerobertk mathematicalmodelofmetabolismandregulationprovidesasystemslevelviewofhowescherichiacolirespondstooxygen
AT bettenbrockkatja mathematicalmodelofmetabolismandregulationprovidesasystemslevelviewofhowescherichiacolirespondstooxygen
AT sawodnyoliver mathematicalmodelofmetabolismandregulationprovidesasystemslevelviewofhowescherichiacolirespondstooxygen