Cargando…
Comparison of CAGE and RNA-seq transcriptome profiling using clonally amplified and single-molecule next-generation sequencing
CAGE (cap analysis gene expression) and RNA-seq are two major technologies used to identify transcript abundances as well as structures. They measure expression by sequencing from either the 5′ end of capped molecules (CAGE) or tags randomly distributed along the length of a transcript (RNA-seq). Li...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory Press
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3975069/ https://www.ncbi.nlm.nih.gov/pubmed/24676093 http://dx.doi.org/10.1101/gr.156232.113 |
_version_ | 1782310079519784960 |
---|---|
author | Kawaji, Hideya Lizio, Marina Itoh, Masayoshi Kanamori-Katayama, Mutsumi Kaiho, Ai Nishiyori-Sueki, Hiromi Shin, Jay W. Kojima-Ishiyama, Miki Kawano, Mitsuoki Murata, Mitsuyoshi Ninomiya-Fukuda, Noriko Ishikawa-Kato, Sachi Nagao-Sato, Sayaka Noma, Shohei Hayashizaki, Yoshihide Forrest, Alistair R.R. Carninci, Piero |
author_facet | Kawaji, Hideya Lizio, Marina Itoh, Masayoshi Kanamori-Katayama, Mutsumi Kaiho, Ai Nishiyori-Sueki, Hiromi Shin, Jay W. Kojima-Ishiyama, Miki Kawano, Mitsuoki Murata, Mitsuyoshi Ninomiya-Fukuda, Noriko Ishikawa-Kato, Sachi Nagao-Sato, Sayaka Noma, Shohei Hayashizaki, Yoshihide Forrest, Alistair R.R. Carninci, Piero |
author_sort | Kawaji, Hideya |
collection | PubMed |
description | CAGE (cap analysis gene expression) and RNA-seq are two major technologies used to identify transcript abundances as well as structures. They measure expression by sequencing from either the 5′ end of capped molecules (CAGE) or tags randomly distributed along the length of a transcript (RNA-seq). Library protocols for clonally amplified (Illumina, SOLiD, 454 Life Sciences [Roche], Ion Torrent), second-generation sequencing platforms typically employ PCR preamplification prior to clonal amplification, while third-generation, single-molecule sequencers can sequence unamplified libraries. Although these transcriptome profiling platforms have been demonstrated to be individually reproducible, no systematic comparison has been carried out between them. Here we compare CAGE, using both second- and third-generation sequencers, and RNA-seq, using a second-generation sequencer based on a panel of RNA mixtures from two human cell lines to examine power in the discrimination of biological states, detection of differentially expressed genes, linearity of measurements, and quantification reproducibility. We found that the quantified levels of gene expression are largely comparable across platforms and conclude that CAGE and RNA-seq are complementary technologies that can be used to improve incomplete gene models. We also found systematic bias in the second- and third-generation platforms, which is likely due to steps such as linker ligation, cleavage by restriction enzymes, and PCR amplification. This study provides a perspective on the performance of these platforms, which will be a baseline in the design of further experiments to tackle complex transcriptomes uncovered in a wide range of cell types. |
format | Online Article Text |
id | pubmed-3975069 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Cold Spring Harbor Laboratory Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-39750692014-04-17 Comparison of CAGE and RNA-seq transcriptome profiling using clonally amplified and single-molecule next-generation sequencing Kawaji, Hideya Lizio, Marina Itoh, Masayoshi Kanamori-Katayama, Mutsumi Kaiho, Ai Nishiyori-Sueki, Hiromi Shin, Jay W. Kojima-Ishiyama, Miki Kawano, Mitsuoki Murata, Mitsuyoshi Ninomiya-Fukuda, Noriko Ishikawa-Kato, Sachi Nagao-Sato, Sayaka Noma, Shohei Hayashizaki, Yoshihide Forrest, Alistair R.R. Carninci, Piero Genome Res Method CAGE (cap analysis gene expression) and RNA-seq are two major technologies used to identify transcript abundances as well as structures. They measure expression by sequencing from either the 5′ end of capped molecules (CAGE) or tags randomly distributed along the length of a transcript (RNA-seq). Library protocols for clonally amplified (Illumina, SOLiD, 454 Life Sciences [Roche], Ion Torrent), second-generation sequencing platforms typically employ PCR preamplification prior to clonal amplification, while third-generation, single-molecule sequencers can sequence unamplified libraries. Although these transcriptome profiling platforms have been demonstrated to be individually reproducible, no systematic comparison has been carried out between them. Here we compare CAGE, using both second- and third-generation sequencers, and RNA-seq, using a second-generation sequencer based on a panel of RNA mixtures from two human cell lines to examine power in the discrimination of biological states, detection of differentially expressed genes, linearity of measurements, and quantification reproducibility. We found that the quantified levels of gene expression are largely comparable across platforms and conclude that CAGE and RNA-seq are complementary technologies that can be used to improve incomplete gene models. We also found systematic bias in the second- and third-generation platforms, which is likely due to steps such as linker ligation, cleavage by restriction enzymes, and PCR amplification. This study provides a perspective on the performance of these platforms, which will be a baseline in the design of further experiments to tackle complex transcriptomes uncovered in a wide range of cell types. Cold Spring Harbor Laboratory Press 2014-04 /pmc/articles/PMC3975069/ /pubmed/24676093 http://dx.doi.org/10.1101/gr.156232.113 Text en © 2014 Kawaji et al.; Published by Cold Spring Harbor Laboratory Press http://creativecommons.org/licenses/by/3.0/ This article, published in Genome Research, is available under a Creative Commons License (Attribution 3.0 Unported), as described at http://creativecommons.org/licenses/by/3.0. |
spellingShingle | Method Kawaji, Hideya Lizio, Marina Itoh, Masayoshi Kanamori-Katayama, Mutsumi Kaiho, Ai Nishiyori-Sueki, Hiromi Shin, Jay W. Kojima-Ishiyama, Miki Kawano, Mitsuoki Murata, Mitsuyoshi Ninomiya-Fukuda, Noriko Ishikawa-Kato, Sachi Nagao-Sato, Sayaka Noma, Shohei Hayashizaki, Yoshihide Forrest, Alistair R.R. Carninci, Piero Comparison of CAGE and RNA-seq transcriptome profiling using clonally amplified and single-molecule next-generation sequencing |
title | Comparison of CAGE and RNA-seq transcriptome profiling using clonally amplified and single-molecule next-generation sequencing |
title_full | Comparison of CAGE and RNA-seq transcriptome profiling using clonally amplified and single-molecule next-generation sequencing |
title_fullStr | Comparison of CAGE and RNA-seq transcriptome profiling using clonally amplified and single-molecule next-generation sequencing |
title_full_unstemmed | Comparison of CAGE and RNA-seq transcriptome profiling using clonally amplified and single-molecule next-generation sequencing |
title_short | Comparison of CAGE and RNA-seq transcriptome profiling using clonally amplified and single-molecule next-generation sequencing |
title_sort | comparison of cage and rna-seq transcriptome profiling using clonally amplified and single-molecule next-generation sequencing |
topic | Method |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3975069/ https://www.ncbi.nlm.nih.gov/pubmed/24676093 http://dx.doi.org/10.1101/gr.156232.113 |
work_keys_str_mv | AT kawajihideya comparisonofcageandrnaseqtranscriptomeprofilingusingclonallyamplifiedandsinglemoleculenextgenerationsequencing AT liziomarina comparisonofcageandrnaseqtranscriptomeprofilingusingclonallyamplifiedandsinglemoleculenextgenerationsequencing AT itohmasayoshi comparisonofcageandrnaseqtranscriptomeprofilingusingclonallyamplifiedandsinglemoleculenextgenerationsequencing AT kanamorikatayamamutsumi comparisonofcageandrnaseqtranscriptomeprofilingusingclonallyamplifiedandsinglemoleculenextgenerationsequencing AT kaihoai comparisonofcageandrnaseqtranscriptomeprofilingusingclonallyamplifiedandsinglemoleculenextgenerationsequencing AT nishiyorisuekihiromi comparisonofcageandrnaseqtranscriptomeprofilingusingclonallyamplifiedandsinglemoleculenextgenerationsequencing AT shinjayw comparisonofcageandrnaseqtranscriptomeprofilingusingclonallyamplifiedandsinglemoleculenextgenerationsequencing AT kojimaishiyamamiki comparisonofcageandrnaseqtranscriptomeprofilingusingclonallyamplifiedandsinglemoleculenextgenerationsequencing AT kawanomitsuoki comparisonofcageandrnaseqtranscriptomeprofilingusingclonallyamplifiedandsinglemoleculenextgenerationsequencing AT muratamitsuyoshi comparisonofcageandrnaseqtranscriptomeprofilingusingclonallyamplifiedandsinglemoleculenextgenerationsequencing AT ninomiyafukudanoriko comparisonofcageandrnaseqtranscriptomeprofilingusingclonallyamplifiedandsinglemoleculenextgenerationsequencing AT ishikawakatosachi comparisonofcageandrnaseqtranscriptomeprofilingusingclonallyamplifiedandsinglemoleculenextgenerationsequencing AT nagaosatosayaka comparisonofcageandrnaseqtranscriptomeprofilingusingclonallyamplifiedandsinglemoleculenextgenerationsequencing AT nomashohei comparisonofcageandrnaseqtranscriptomeprofilingusingclonallyamplifiedandsinglemoleculenextgenerationsequencing AT hayashizakiyoshihide comparisonofcageandrnaseqtranscriptomeprofilingusingclonallyamplifiedandsinglemoleculenextgenerationsequencing AT forrestalistairrr comparisonofcageandrnaseqtranscriptomeprofilingusingclonallyamplifiedandsinglemoleculenextgenerationsequencing AT carnincipiero comparisonofcageandrnaseqtranscriptomeprofilingusingclonallyamplifiedandsinglemoleculenextgenerationsequencing AT comparisonofcageandrnaseqtranscriptomeprofilingusingclonallyamplifiedandsinglemoleculenextgenerationsequencing |