Cargando…

MAAMD: a workflow to standardize meta-analyses and comparison of affymetrix microarray data

BACKGROUND: Mandatory deposit of raw microarray data files for public access, prior to study publication, provides significant opportunities to conduct new bioinformatics analyses within and across multiple datasets. Analysis of raw microarray data files (e.g. Affymetrix CEL files) can be time consu...

Descripción completa

Detalles Bibliográficos
Autores principales: Gan, Zhuohui, Wang, Jianwu, Salomonis, Nathan, Stowe, Jennifer C, Haddad, Gabriel G, McCulloch, Andrew D, Altintas, Ilkay, Zambon, Alexander C
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3975178/
https://www.ncbi.nlm.nih.gov/pubmed/24621103
http://dx.doi.org/10.1186/1471-2105-15-69
_version_ 1782310097929633792
author Gan, Zhuohui
Wang, Jianwu
Salomonis, Nathan
Stowe, Jennifer C
Haddad, Gabriel G
McCulloch, Andrew D
Altintas, Ilkay
Zambon, Alexander C
author_facet Gan, Zhuohui
Wang, Jianwu
Salomonis, Nathan
Stowe, Jennifer C
Haddad, Gabriel G
McCulloch, Andrew D
Altintas, Ilkay
Zambon, Alexander C
author_sort Gan, Zhuohui
collection PubMed
description BACKGROUND: Mandatory deposit of raw microarray data files for public access, prior to study publication, provides significant opportunities to conduct new bioinformatics analyses within and across multiple datasets. Analysis of raw microarray data files (e.g. Affymetrix CEL files) can be time consuming, complex, and requires fundamental computational and bioinformatics skills. The development of analytical workflows to automate these tasks simplifies the processing of, improves the efficiency of, and serves to standardize multiple and sequential analyses. Once installed, workflows facilitate the tedious steps required to run rapid intra- and inter-dataset comparisons. RESULTS: We developed a workflow to facilitate and standardize Meta-Analysis of Affymetrix Microarray Data analysis (MAAMD) in Kepler. Two freely available stand-alone software tools, R and AltAnalyze were embedded in MAAMD. The inputs of MAAMD are user-editable csv files, which contain sample information and parameters describing the locations of input files and required tools. MAAMD was tested by analyzing 4 different GEO datasets from mice and drosophila. MAAMD automates data downloading, data organization, data quality control assesment, differential gene expression analysis, clustering analysis, pathway visualization, gene-set enrichment analysis, and cross-species orthologous-gene comparisons. MAAMD was utilized to identify gene orthologues responding to hypoxia or hyperoxia in both mice and drosophila. The entire set of analyses for 4 datasets (34 total microarrays) finished in ~ one hour. CONCLUSIONS: MAAMD saves time, minimizes the required computer skills, and offers a standardized procedure for users to analyze microarray datasets and make new intra- and inter-dataset comparisons.
format Online
Article
Text
id pubmed-3975178
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-39751782014-04-05 MAAMD: a workflow to standardize meta-analyses and comparison of affymetrix microarray data Gan, Zhuohui Wang, Jianwu Salomonis, Nathan Stowe, Jennifer C Haddad, Gabriel G McCulloch, Andrew D Altintas, Ilkay Zambon, Alexander C BMC Bioinformatics Software BACKGROUND: Mandatory deposit of raw microarray data files for public access, prior to study publication, provides significant opportunities to conduct new bioinformatics analyses within and across multiple datasets. Analysis of raw microarray data files (e.g. Affymetrix CEL files) can be time consuming, complex, and requires fundamental computational and bioinformatics skills. The development of analytical workflows to automate these tasks simplifies the processing of, improves the efficiency of, and serves to standardize multiple and sequential analyses. Once installed, workflows facilitate the tedious steps required to run rapid intra- and inter-dataset comparisons. RESULTS: We developed a workflow to facilitate and standardize Meta-Analysis of Affymetrix Microarray Data analysis (MAAMD) in Kepler. Two freely available stand-alone software tools, R and AltAnalyze were embedded in MAAMD. The inputs of MAAMD are user-editable csv files, which contain sample information and parameters describing the locations of input files and required tools. MAAMD was tested by analyzing 4 different GEO datasets from mice and drosophila. MAAMD automates data downloading, data organization, data quality control assesment, differential gene expression analysis, clustering analysis, pathway visualization, gene-set enrichment analysis, and cross-species orthologous-gene comparisons. MAAMD was utilized to identify gene orthologues responding to hypoxia or hyperoxia in both mice and drosophila. The entire set of analyses for 4 datasets (34 total microarrays) finished in ~ one hour. CONCLUSIONS: MAAMD saves time, minimizes the required computer skills, and offers a standardized procedure for users to analyze microarray datasets and make new intra- and inter-dataset comparisons. BioMed Central 2014-03-12 /pmc/articles/PMC3975178/ /pubmed/24621103 http://dx.doi.org/10.1186/1471-2105-15-69 Text en Copyright © 2014 Gan et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.
spellingShingle Software
Gan, Zhuohui
Wang, Jianwu
Salomonis, Nathan
Stowe, Jennifer C
Haddad, Gabriel G
McCulloch, Andrew D
Altintas, Ilkay
Zambon, Alexander C
MAAMD: a workflow to standardize meta-analyses and comparison of affymetrix microarray data
title MAAMD: a workflow to standardize meta-analyses and comparison of affymetrix microarray data
title_full MAAMD: a workflow to standardize meta-analyses and comparison of affymetrix microarray data
title_fullStr MAAMD: a workflow to standardize meta-analyses and comparison of affymetrix microarray data
title_full_unstemmed MAAMD: a workflow to standardize meta-analyses and comparison of affymetrix microarray data
title_short MAAMD: a workflow to standardize meta-analyses and comparison of affymetrix microarray data
title_sort maamd: a workflow to standardize meta-analyses and comparison of affymetrix microarray data
topic Software
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3975178/
https://www.ncbi.nlm.nih.gov/pubmed/24621103
http://dx.doi.org/10.1186/1471-2105-15-69
work_keys_str_mv AT ganzhuohui maamdaworkflowtostandardizemetaanalysesandcomparisonofaffymetrixmicroarraydata
AT wangjianwu maamdaworkflowtostandardizemetaanalysesandcomparisonofaffymetrixmicroarraydata
AT salomonisnathan maamdaworkflowtostandardizemetaanalysesandcomparisonofaffymetrixmicroarraydata
AT stowejenniferc maamdaworkflowtostandardizemetaanalysesandcomparisonofaffymetrixmicroarraydata
AT haddadgabrielg maamdaworkflowtostandardizemetaanalysesandcomparisonofaffymetrixmicroarraydata
AT mccullochandrewd maamdaworkflowtostandardizemetaanalysesandcomparisonofaffymetrixmicroarraydata
AT altintasilkay maamdaworkflowtostandardizemetaanalysesandcomparisonofaffymetrixmicroarraydata
AT zambonalexanderc maamdaworkflowtostandardizemetaanalysesandcomparisonofaffymetrixmicroarraydata