Cargando…
Asthma incidence and risk factors in a national longitudinal sample of adolescent Canadians: a prospective cohort study
BACKGROUND: Estimates of asthma incidence and its possible determinants in adolescent populations have rarely been obtained using prospective designs. We sought to identify socio-demographic and other patterns in the incidence of asthma among Canadian adolescents and to examine possible behavioural...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3975456/ https://www.ncbi.nlm.nih.gov/pubmed/24666682 http://dx.doi.org/10.1186/1471-2466-14-51 |
Sumario: | BACKGROUND: Estimates of asthma incidence and its possible determinants in adolescent populations have rarely been obtained using prospective designs. We sought to identify socio-demographic and other patterns in the incidence of asthma among Canadian adolescents and to examine possible behavioural and environmental determinants of asthma incidence using longitudinal analyses. METHODS: We used data from the National Population Health Survey (NPHS), a nationally representative longitudinal survey of Canadians. All persons aged 12–18 years without asthma at baseline were followed up to a maximum of 12 years. The outcome was a reported diagnosis of asthma during the follow-up period. Analyses were weighted to the population and bootstrapping procedures were used to estimate variances. RESULTS: Participants (n = 956) represented 2,038,890 adolescents of whom 293,450 (14.4%) developed asthma over the 21,274,890 person-years of follow-up. Overall, the incidence of asthma was 10.2 per 1000 person-years. In adjusted Cox regression analysis, being female (HR = 2.13, 95% CI = 1.26-3.62, p = 0.005) and being exposed to passive smoking (HR = 2.06, 95% CI = 1.27-3.34, p = 0.003) were associated with the development of asthma while no statistically significant associations were identified for rural residence, being overweight, and other health behaviours. There was also an apparent cohort effect among girls where girls who were older at baseline reported being diagnosed with asthma more over the follow-up than their younger counterparts. This was not observed among males. CONCLUSIONS: Asthma prevention initiatives for adolescents should target girls and focus on smoking exposures. The role that differential diagnostic patterns play in these observations should be investigated to more accurately assess the incidence of asthma. |
---|