Cargando…
Predicting motor learning performance from Electroencephalographic data
BACKGROUND: Research on the neurophysiological correlates of visuomotor integration and learning (VMIL) has largely focused on identifying learning-induced activity changes in cortical areas during motor execution. While such studies have generated valuable insights into the neural basis of VMIL, li...
Autores principales: | Meyer, Timm, Peters, Jan, Zander, Thorsten O, Schölkopf, Bernhard, Grosse-Wentrup, Moritz |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3975848/ https://www.ncbi.nlm.nih.gov/pubmed/24594233 http://dx.doi.org/10.1186/1743-0003-11-24 |
Ejemplares similares
-
Absence of EEG correlates of self-referential processing depth in ALS
por: Fomina, Tatiana, et al.
Publicado: (2017) -
Multisubject Learning for Common Spatial Patterns in Motor-Imagery BCI
por: Devlaminck, Dieter, et al.
Publicado: (2011) -
A large electroencephalographic motor imagery dataset for electroencephalographic brain computer interfaces
por: Kaya, Murat, et al.
Publicado: (2018) -
Dimensionality Reduction and Channel Selection of Motor Imagery Electroencephalographic Data
por: Naeem, Muhammad, et al.
Publicado: (2009) -
Predicting motor behavior: an efficient EEG signal processing pipeline to detect brain states with potential therapeutic relevance for VR-based neurorehabilitation
por: McDermott, Eric J., et al.
Publicado: (2021)