Cargando…

Mycobacterium bovis BCG Triggered MyD88 Induces miR-124 Feedback Negatively Regulates Immune Response in Alveolar Epithelial Cells

The emerging roles of microRNAs (miRNAs) and pulmonary epithelial cells in regulating the immune response against microbial invasion has attracted increasing attention in recent years, however, the immunoregulatory roles of miRNAs in the pulmonary epithelial cells in response to mycobacterial infect...

Descripción completa

Detalles Bibliográficos
Autores principales: Ma, Chunyan, Li, Yong, Zeng, Jin, Wu, Xiaoling, Liu, Xiaoming, Wang, Yujiong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3976256/
https://www.ncbi.nlm.nih.gov/pubmed/24705038
http://dx.doi.org/10.1371/journal.pone.0092419
Descripción
Sumario:The emerging roles of microRNAs (miRNAs) and pulmonary epithelial cells in regulating the immune response against microbial invasion has attracted increasing attention in recent years, however, the immunoregulatory roles of miRNAs in the pulmonary epithelial cells in response to mycobacterial infection has not been fully demonstrated. In this study, we show that miR-124 expression is induced upon Mycobacterium bovis Bacillus Calmette-Guerin (BCG) infection in A549 alveolar epithelial cells and murine lungs. miR-124 is able to modulate Toll-like receptor (TLR) signaling in A459 cells. In this regard, multiple components, including TLR6, myeloid differentiation factor 88 (MyD88), TNFR-associated factor 6 and tumor necrosis factor-α of the TLR signaling cascade are directly regulated by miR-124 in response to BCG stimulation. In addition, miR-124 expression was induced upon MyD88 overexpression and/or BCG stimulation, while silencing MyD88 expression by small interfering RNA dramatically down-regulated miR-124 transcription in A549 cells. These results indicate an underlying negative feedback mechanism between miR-124 and MyD88 in alveolar epithelial cells to prevent an excessive inflammatory response during mycobacterial infection. These observations suggest that miR-124 is a potential target for preventive and therapeutic intervention against the pulmonary tuberculosis, an infectious disease caused by Mycobacterium tuberculosis infection.