Cargando…
Information Transfer and Criticality in the Ising Model on the Human Connectome
We implement the Ising model on a structural connectivity matrix describing the brain at two different resolutions. Tuning the model temperature to its critical value, i.e. at the susceptibility peak, we find a maximal amount of total information transfer between the spin variables. At this point th...
Autores principales: | Marinazzo, Daniele, Pellicoro, Mario, Wu, Guorong, Angelini, Leonardo, Cortés, Jesús M., Stramaglia, Sebastiano |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3976308/ https://www.ncbi.nlm.nih.gov/pubmed/24705627 http://dx.doi.org/10.1371/journal.pone.0093616 |
Ejemplares similares
-
Information transfer of an Ising model on a brain network
por: Marinazzo, D, et al.
Publicado: (2013) -
Synergistic information in a dynamical model implemented on the human structural connectome reveals spatially distinct associations with age
por: Nuzzi, Davide, et al.
Publicado: (2020) -
Information Flow in Networks and the Law of Diminishing Marginal Returns: Evidence from Modeling and Human Electroencephalographic Recordings
por: Marinazzo, Daniele, et al.
Publicado: (2012) -
Consensus clustering approach to group brain connectivity matrices
por: Rasero, Javier, et al.
Publicado: (2017) -
Connectome sorting by consensus clustering increases separability in group neuroimaging studies
por: Rasero, Javier, et al.
Publicado: (2019)