Cargando…
Estimated Secondary Structure Propensities within V1/V2 Region of HIV gp120 Are an Important Global Antibody Neutralization Sensitivity Determinant
BACKGROUND: Neutralization sensitivity of HIV-1 virus to antibodies and anti-sera varies greatly between the isolates. Significant role of V1/V2 domain as a global neutralization sensitivity regulator has been suggested. Recent X-ray structures revealed presence of well-defined tertiary structure wi...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3976368/ https://www.ncbi.nlm.nih.gov/pubmed/24705879 http://dx.doi.org/10.1371/journal.pone.0094002 |
Sumario: | BACKGROUND: Neutralization sensitivity of HIV-1 virus to antibodies and anti-sera varies greatly between the isolates. Significant role of V1/V2 domain as a global neutralization sensitivity regulator has been suggested. Recent X-ray structures revealed presence of well-defined tertiary structure within this domain but also demonstrated partial disorder and conformational heterogeneity. METHODS: Correlations of neutralization sensitivity with the conformational propensities for beta-strand and alpha-helix formation over the entire folded V1/V2 domain as well as within sliding 5-residue window were investigated. Analysis was based on a set of neutralization data for 106 HIV isolates for which consistent neutralization sensitivity measurements against multiple pools of human immune sera have been previously reported. RESULTS: Significant correlation between beta-sheet formation propensity of the folded segments of V1/V2 domain and neutralization sensitivity was observed. Strongest correlation peaks localized to the beta-strands B and C. Correlation persisted when subsets of HIV isolates belonging to clades B, C and circulating recombinant form BC where analyzed individually or in combinations. CONCLUSIONS: Observed correlations suggest that stability of the beta-sheet structure and/or degree of structural disorder in the V1/V2 domain is an important determinant of the global neutralization sensitivity of HIV-1 virus. While specific mechanism is to yet to be investigated, plausible hypothesis is that less ordered V1/V2s may have stronger masking effect on various neutralizing epitopes, perhaps effectively occupying larger volume and thereby occluding antibody access. |
---|