Cargando…
Migration, Proliferation, and Differentiation of Cord Blood Mesenchymal Stromal Cells Treated with Histone Deacetylase Inhibitor Valproic Acid
Mesenchymal stromal cells (MSC) have great potential for cellular therapies as they can be directed to differentiate into certain lineages or to exert paracrine effects at sites of injury. The interactions between stromal cell-derived factor (SDF)-1 and its receptors CXCR4 and CXCR7 play pivotal rol...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3976771/ https://www.ncbi.nlm.nih.gov/pubmed/24757448 http://dx.doi.org/10.1155/2014/610495 |
_version_ | 1782310323422756864 |
---|---|
author | Marquez-Curtis, Leah A. Qiu, Yuanyuan Xu, April Janowska-Wieczorek, Anna |
author_facet | Marquez-Curtis, Leah A. Qiu, Yuanyuan Xu, April Janowska-Wieczorek, Anna |
author_sort | Marquez-Curtis, Leah A. |
collection | PubMed |
description | Mesenchymal stromal cells (MSC) have great potential for cellular therapies as they can be directed to differentiate into certain lineages or to exert paracrine effects at sites of injury. The interactions between stromal cell-derived factor (SDF)-1 and its receptors CXCR4 and CXCR7 play pivotal roles in the migration of MSC to injured tissues. We evaluated whether a histone deacetylase inhibitor valproic acid (VPA) modulates the migration of cord blood (CB-) derived MSC towards SDF-1 and their proliferation and differentiation. We found that in MSC, VPA increased (i) the gene and total protein expression of CXCR4 and CXCR7 and primed migration towards a low gradient of SDF-1, (ii) the gene expression of MMP-2 and secretion and activation of proMMP-2, (iii) the proliferation and gene expression of pluripotency markers SOX2 and Oct-4, and exposure to lower concentrations of VPA (≤5 mM) had no effect on their differentiation to osteocytes and chondrocytes. Thus, our study indicates that VPA enhances the migration of CB MSC towards SDF-1 by increasing the expression of CXCR4, CXCR7, and MMP-2. VPA at low concentrations may be used for ex vivo treatment of MSC to increase their recruitment to sites of injury without compromising their ability to proliferate or differentiate. |
format | Online Article Text |
id | pubmed-3976771 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-39767712014-04-22 Migration, Proliferation, and Differentiation of Cord Blood Mesenchymal Stromal Cells Treated with Histone Deacetylase Inhibitor Valproic Acid Marquez-Curtis, Leah A. Qiu, Yuanyuan Xu, April Janowska-Wieczorek, Anna Stem Cells Int Research Article Mesenchymal stromal cells (MSC) have great potential for cellular therapies as they can be directed to differentiate into certain lineages or to exert paracrine effects at sites of injury. The interactions between stromal cell-derived factor (SDF)-1 and its receptors CXCR4 and CXCR7 play pivotal roles in the migration of MSC to injured tissues. We evaluated whether a histone deacetylase inhibitor valproic acid (VPA) modulates the migration of cord blood (CB-) derived MSC towards SDF-1 and their proliferation and differentiation. We found that in MSC, VPA increased (i) the gene and total protein expression of CXCR4 and CXCR7 and primed migration towards a low gradient of SDF-1, (ii) the gene expression of MMP-2 and secretion and activation of proMMP-2, (iii) the proliferation and gene expression of pluripotency markers SOX2 and Oct-4, and exposure to lower concentrations of VPA (≤5 mM) had no effect on their differentiation to osteocytes and chondrocytes. Thus, our study indicates that VPA enhances the migration of CB MSC towards SDF-1 by increasing the expression of CXCR4, CXCR7, and MMP-2. VPA at low concentrations may be used for ex vivo treatment of MSC to increase their recruitment to sites of injury without compromising their ability to proliferate or differentiate. Hindawi Publishing Corporation 2014 2014-03-16 /pmc/articles/PMC3976771/ /pubmed/24757448 http://dx.doi.org/10.1155/2014/610495 Text en Copyright © 2014 Leah A. Marquez-Curtis et al. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Marquez-Curtis, Leah A. Qiu, Yuanyuan Xu, April Janowska-Wieczorek, Anna Migration, Proliferation, and Differentiation of Cord Blood Mesenchymal Stromal Cells Treated with Histone Deacetylase Inhibitor Valproic Acid |
title | Migration, Proliferation, and Differentiation of Cord Blood Mesenchymal Stromal Cells Treated with Histone Deacetylase Inhibitor Valproic Acid |
title_full | Migration, Proliferation, and Differentiation of Cord Blood Mesenchymal Stromal Cells Treated with Histone Deacetylase Inhibitor Valproic Acid |
title_fullStr | Migration, Proliferation, and Differentiation of Cord Blood Mesenchymal Stromal Cells Treated with Histone Deacetylase Inhibitor Valproic Acid |
title_full_unstemmed | Migration, Proliferation, and Differentiation of Cord Blood Mesenchymal Stromal Cells Treated with Histone Deacetylase Inhibitor Valproic Acid |
title_short | Migration, Proliferation, and Differentiation of Cord Blood Mesenchymal Stromal Cells Treated with Histone Deacetylase Inhibitor Valproic Acid |
title_sort | migration, proliferation, and differentiation of cord blood mesenchymal stromal cells treated with histone deacetylase inhibitor valproic acid |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3976771/ https://www.ncbi.nlm.nih.gov/pubmed/24757448 http://dx.doi.org/10.1155/2014/610495 |
work_keys_str_mv | AT marquezcurtisleaha migrationproliferationanddifferentiationofcordbloodmesenchymalstromalcellstreatedwithhistonedeacetylaseinhibitorvalproicacid AT qiuyuanyuan migrationproliferationanddifferentiationofcordbloodmesenchymalstromalcellstreatedwithhistonedeacetylaseinhibitorvalproicacid AT xuapril migrationproliferationanddifferentiationofcordbloodmesenchymalstromalcellstreatedwithhistonedeacetylaseinhibitorvalproicacid AT janowskawieczorekanna migrationproliferationanddifferentiationofcordbloodmesenchymalstromalcellstreatedwithhistonedeacetylaseinhibitorvalproicacid |