Cargando…
Identifying Potential Clinical Syndromes of Hepatocellular Carcinoma Using PSO-Based Hierarchical Feature Selection Algorithm
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors. Clinical symptoms attributable to HCC are usually absent, thus often miss the best therapeutic opportunities. Traditional Chinese Medicine (TCM) plays an active role in diagnosis and treatment of HCC. In this paper, we propos...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3976846/ https://www.ncbi.nlm.nih.gov/pubmed/24745007 http://dx.doi.org/10.1155/2014/127572 |
_version_ | 1782310339566632960 |
---|---|
author | Ji, Zhiwei Wang, Bing |
author_facet | Ji, Zhiwei Wang, Bing |
author_sort | Ji, Zhiwei |
collection | PubMed |
description | Hepatocellular carcinoma (HCC) is one of the most common malignant tumors. Clinical symptoms attributable to HCC are usually absent, thus often miss the best therapeutic opportunities. Traditional Chinese Medicine (TCM) plays an active role in diagnosis and treatment of HCC. In this paper, we proposed a particle swarm optimization-based hierarchical feature selection (PSOHFS) model to infer potential syndromes for diagnosis of HCC. Firstly, the hierarchical feature representation is developed by a three-layer tree. The clinical symptoms and positive score of patient are leaf nodes and root in the tree, respectively, while each syndrome feature on the middle layer is extracted from a group of symptoms. Secondly, an improved PSO-based algorithm is applied in a new reduced feature space to search an optimal syndrome subset. Based on the result of feature selection, the causal relationships of symptoms and syndromes are inferred via Bayesian networks. In our experiment, 147 symptoms were aggregated into 27 groups and 27 syndrome features were extracted. The proposed approach discovered 24 syndromes which obviously improved the diagnosis accuracy. Finally, the Bayesian approach was applied to represent the causal relationships both at symptom and syndrome levels. The results show that our computational model can facilitate the clinical diagnosis of HCC. |
format | Online Article Text |
id | pubmed-3976846 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-39768462014-04-17 Identifying Potential Clinical Syndromes of Hepatocellular Carcinoma Using PSO-Based Hierarchical Feature Selection Algorithm Ji, Zhiwei Wang, Bing Biomed Res Int Research Article Hepatocellular carcinoma (HCC) is one of the most common malignant tumors. Clinical symptoms attributable to HCC are usually absent, thus often miss the best therapeutic opportunities. Traditional Chinese Medicine (TCM) plays an active role in diagnosis and treatment of HCC. In this paper, we proposed a particle swarm optimization-based hierarchical feature selection (PSOHFS) model to infer potential syndromes for diagnosis of HCC. Firstly, the hierarchical feature representation is developed by a three-layer tree. The clinical symptoms and positive score of patient are leaf nodes and root in the tree, respectively, while each syndrome feature on the middle layer is extracted from a group of symptoms. Secondly, an improved PSO-based algorithm is applied in a new reduced feature space to search an optimal syndrome subset. Based on the result of feature selection, the causal relationships of symptoms and syndromes are inferred via Bayesian networks. In our experiment, 147 symptoms were aggregated into 27 groups and 27 syndrome features were extracted. The proposed approach discovered 24 syndromes which obviously improved the diagnosis accuracy. Finally, the Bayesian approach was applied to represent the causal relationships both at symptom and syndrome levels. The results show that our computational model can facilitate the clinical diagnosis of HCC. Hindawi Publishing Corporation 2014 2014-03-17 /pmc/articles/PMC3976846/ /pubmed/24745007 http://dx.doi.org/10.1155/2014/127572 Text en Copyright © 2014 Z. Ji and B. Wang. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Ji, Zhiwei Wang, Bing Identifying Potential Clinical Syndromes of Hepatocellular Carcinoma Using PSO-Based Hierarchical Feature Selection Algorithm |
title | Identifying Potential Clinical Syndromes of Hepatocellular Carcinoma
Using PSO-Based Hierarchical Feature Selection Algorithm |
title_full | Identifying Potential Clinical Syndromes of Hepatocellular Carcinoma
Using PSO-Based Hierarchical Feature Selection Algorithm |
title_fullStr | Identifying Potential Clinical Syndromes of Hepatocellular Carcinoma
Using PSO-Based Hierarchical Feature Selection Algorithm |
title_full_unstemmed | Identifying Potential Clinical Syndromes of Hepatocellular Carcinoma
Using PSO-Based Hierarchical Feature Selection Algorithm |
title_short | Identifying Potential Clinical Syndromes of Hepatocellular Carcinoma
Using PSO-Based Hierarchical Feature Selection Algorithm |
title_sort | identifying potential clinical syndromes of hepatocellular carcinoma
using pso-based hierarchical feature selection algorithm |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3976846/ https://www.ncbi.nlm.nih.gov/pubmed/24745007 http://dx.doi.org/10.1155/2014/127572 |
work_keys_str_mv | AT jizhiwei identifyingpotentialclinicalsyndromesofhepatocellularcarcinomausingpsobasedhierarchicalfeatureselectionalgorithm AT wangbing identifyingpotentialclinicalsyndromesofhepatocellularcarcinomausingpsobasedhierarchicalfeatureselectionalgorithm |