Cargando…

Anisotropic Hardy Spaces of Musielak-Orlicz Type with Applications to Boundedness of Sublinear Operators

Let φ : ℝ(n) × [0, ∞)→[0, ∞) be a Musielak-Orlicz function and A an expansive dilation. In this paper, the authors introduce the anisotropic Hardy space of Musielak-Orlicz type, H (A) (φ)(ℝ(n)), via the grand maximal function. The authors then obtain some real-variable characterizations of H (A) (φ)...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Baode, Yang, Dachun, Yuan, Wen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3976847/
https://www.ncbi.nlm.nih.gov/pubmed/24757418
http://dx.doi.org/10.1155/2014/306214
Descripción
Sumario:Let φ : ℝ(n) × [0, ∞)→[0, ∞) be a Musielak-Orlicz function and A an expansive dilation. In this paper, the authors introduce the anisotropic Hardy space of Musielak-Orlicz type, H (A) (φ)(ℝ(n)), via the grand maximal function. The authors then obtain some real-variable characterizations of H (A) (φ)(ℝ(n)) in terms of the radial, the nontangential, and the tangential maximal functions, which generalize the known results on the anisotropic Hardy space H (A) (p)(ℝ(n)) with p ∈ (0,1] and are new even for its weighted variant. Finally, the authors characterize these spaces by anisotropic atomic decompositions. The authors also obtain the finite atomic decomposition characterization of H (A) (φ)(ℝ(n)), and, as an application, the authors prove that, for a given admissible triplet (φ, q, s), if T is a sublinear operator and maps all (φ, q, s)-atoms with q < ∞ (or all continuous (φ, q, s)-atoms with q = ∞) into uniformly bounded elements of some quasi-Banach spaces ℬ, then T uniquely extends to a bounded sublinear operator from H (A) (φ)(ℝ(n)) to ℬ. These results are new even for anisotropic Orlicz-Hardy spaces on ℝ(n).