Cargando…

Urinary Metabolomics on the Biochemical Profiles in Diet-Induced Hyperlipidemia Rat Using Ultraperformance Liquid Chromatography Coupled with Quadrupole Time-of-Flight SYNAPT High-Definition Mass Spectrometry

Ultraperformance liquid chromatography coupled with quadrupole time-of-flight synapt high-definition mass spectrometry metabolomics was used to characterize the urinary metabolic profiling of diet-induced hyperlipidaemia in a rat model. Analysis was done by orthogonal partial least squares discrimin...

Descripción completa

Detalles Bibliográficos
Autores principales: Miao, Hua, Chen, Hua, Zhang, Xu, Yin, Lu, Chen, Dan-Qian, Cheng, Xian-Long, Bai, Xu, Wei, Feng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3976912/
https://www.ncbi.nlm.nih.gov/pubmed/24757578
http://dx.doi.org/10.1155/2014/184162
Descripción
Sumario:Ultraperformance liquid chromatography coupled with quadrupole time-of-flight synapt high-definition mass spectrometry metabolomics was used to characterize the urinary metabolic profiling of diet-induced hyperlipidaemia in a rat model. Analysis was done by orthogonal partial least squares discriminant analysis, correlation analysis, heat map analysis, and KEGG pathways analysis. Potential biomarkers were chosen by S-plot and were identified by accurate mass, isotopic pattern, and MS/MS fragments information. Significant differences in fatty acid, amino acid, nucleoside, and bile acid were observed, indicating the perturbations of fatty acid, amino acid, nucleoside, and bile acid metabolisms in diet-induced hyperlipidaemia rats. This study provides further insight into the metabolic profiling across a wide range of biochemical pathways in response to diet-induced hyperlipidaemia.