Cargando…

Potential Novel Biomarkers for Diabetic Testicular Damage in Streptozotocin-Induced Diabetic Rats: Nerve Growth Factor Beta and Vascular Endothelial Growth Factor

Background. It is well known that diabetes mellitus may cause testicular damage. Vascular endothelial growth factor (VEGF) and nerve growth factor beta (NGF-β) are important neurotrophic factors for male reproductive system. Objective. We aimed to investigate the correlation between testicular damag...

Descripción completa

Detalles Bibliográficos
Autores principales: Sisman, Ali Rıza, Kiray, Muge, Camsari, Ulas Mehmet, Evren, Merve, Ates, Mehmet, Baykara, Basak, Aksu, Ilkay, Guvendi, Guven, Uysal, Nazan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3977428/
https://www.ncbi.nlm.nih.gov/pubmed/24771956
http://dx.doi.org/10.1155/2014/108106
Descripción
Sumario:Background. It is well known that diabetes mellitus may cause testicular damage. Vascular endothelial growth factor (VEGF) and nerve growth factor beta (NGF-β) are important neurotrophic factors for male reproductive system. Objective. We aimed to investigate the correlation between testicular damage and testicular VEGF and NGF-β levels in diabetic rats. Methods. Diabetes was induced by streptozotocin (STZ, 45 mg/kg/i.p.) in adult rats. Five weeks later testicular tissue was removed; testicular VEGF and NGF-β levels were measured by ELISA. Testicular damage was detected by using hematoxylin and eosin staining and periodic acid-Schiff staining, and apoptosis was identified by terminal-deoxynucleotidyl-transferase-mediated dUTP nick end labeling (TUNEL). Seminiferous tubular sperm formation was evaluated using Johnsen's score. Results. In diabetic rats, seminiferous tubule diameter was found to be decreased; basement membrane was found to be thickened in seminiferous tubules and degenerated germ cells. Additionally, TUNEL-positive cells were increased in number of VEGF+ cells and levels of VEGF and NGF-β were decreased in diabetic testes. Correlation between VEGF and NGF-β levels was strong. Conclusion. These results suggest that the decrease of VEGF and NGF-β levels is associated with the increase of the apoptosis and testicular damage in diabetic rats. Testis VEGF and NGF-β levels could be potential novel biomarkers for diabetes induced testicular damage.