Cargando…

A Domain Decomposition Method for Time Fractional Reaction-Diffusion Equation

The computational complexity of one-dimensional time fractional reaction-diffusion equation is O(N (2) M) compared with O(NM) for classical integer reaction-diffusion equation. Parallel computing is used to overcome this challenge. Domain decomposition method (DDM) embodies large potential for paral...

Descripción completa

Detalles Bibliográficos
Autores principales: Gong, Chunye, Bao, Weimin, Tang, Guojian, Jiang, Yuewen, Liu, Jie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3977434/
https://www.ncbi.nlm.nih.gov/pubmed/24778594
http://dx.doi.org/10.1155/2014/681707
_version_ 1782310417959223296
author Gong, Chunye
Bao, Weimin
Tang, Guojian
Jiang, Yuewen
Liu, Jie
author_facet Gong, Chunye
Bao, Weimin
Tang, Guojian
Jiang, Yuewen
Liu, Jie
author_sort Gong, Chunye
collection PubMed
description The computational complexity of one-dimensional time fractional reaction-diffusion equation is O(N (2) M) compared with O(NM) for classical integer reaction-diffusion equation. Parallel computing is used to overcome this challenge. Domain decomposition method (DDM) embodies large potential for parallelization of the numerical solution for fractional equations and serves as a basis for distributed, parallel computations. A domain decomposition algorithm for time fractional reaction-diffusion equation with implicit finite difference method is proposed. The domain decomposition algorithm keeps the same parallelism but needs much fewer iterations, compared with Jacobi iteration in each time step. Numerical experiments are used to verify the efficiency of the obtained algorithm.
format Online
Article
Text
id pubmed-3977434
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Hindawi Publishing Corporation
record_format MEDLINE/PubMed
spelling pubmed-39774342014-04-28 A Domain Decomposition Method for Time Fractional Reaction-Diffusion Equation Gong, Chunye Bao, Weimin Tang, Guojian Jiang, Yuewen Liu, Jie ScientificWorldJournal Research Article The computational complexity of one-dimensional time fractional reaction-diffusion equation is O(N (2) M) compared with O(NM) for classical integer reaction-diffusion equation. Parallel computing is used to overcome this challenge. Domain decomposition method (DDM) embodies large potential for parallelization of the numerical solution for fractional equations and serves as a basis for distributed, parallel computations. A domain decomposition algorithm for time fractional reaction-diffusion equation with implicit finite difference method is proposed. The domain decomposition algorithm keeps the same parallelism but needs much fewer iterations, compared with Jacobi iteration in each time step. Numerical experiments are used to verify the efficiency of the obtained algorithm. Hindawi Publishing Corporation 2014-03-19 /pmc/articles/PMC3977434/ /pubmed/24778594 http://dx.doi.org/10.1155/2014/681707 Text en Copyright © 2014 Chunye Gong et al. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Gong, Chunye
Bao, Weimin
Tang, Guojian
Jiang, Yuewen
Liu, Jie
A Domain Decomposition Method for Time Fractional Reaction-Diffusion Equation
title A Domain Decomposition Method for Time Fractional Reaction-Diffusion Equation
title_full A Domain Decomposition Method for Time Fractional Reaction-Diffusion Equation
title_fullStr A Domain Decomposition Method for Time Fractional Reaction-Diffusion Equation
title_full_unstemmed A Domain Decomposition Method for Time Fractional Reaction-Diffusion Equation
title_short A Domain Decomposition Method for Time Fractional Reaction-Diffusion Equation
title_sort domain decomposition method for time fractional reaction-diffusion equation
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3977434/
https://www.ncbi.nlm.nih.gov/pubmed/24778594
http://dx.doi.org/10.1155/2014/681707
work_keys_str_mv AT gongchunye adomaindecompositionmethodfortimefractionalreactiondiffusionequation
AT baoweimin adomaindecompositionmethodfortimefractionalreactiondiffusionequation
AT tangguojian adomaindecompositionmethodfortimefractionalreactiondiffusionequation
AT jiangyuewen adomaindecompositionmethodfortimefractionalreactiondiffusionequation
AT liujie adomaindecompositionmethodfortimefractionalreactiondiffusionequation
AT gongchunye domaindecompositionmethodfortimefractionalreactiondiffusionequation
AT baoweimin domaindecompositionmethodfortimefractionalreactiondiffusionequation
AT tangguojian domaindecompositionmethodfortimefractionalreactiondiffusionequation
AT jiangyuewen domaindecompositionmethodfortimefractionalreactiondiffusionequation
AT liujie domaindecompositionmethodfortimefractionalreactiondiffusionequation