Cargando…
Joint Bayesian Inference Reveals Model Properties Shared between Multiple Experimental Conditions
Statistical modeling produces compressed and often more easily interpretable descriptions of experimental data in form of model parameters. When experimental manipulations target selected parameters, it is necessary for their interpretation that other model components remain constant. For example, p...
Autores principales: | Dold, Hannah M. H., Fründ, Ingo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3977831/ https://www.ncbi.nlm.nih.gov/pubmed/24710070 http://dx.doi.org/10.1371/journal.pone.0091710 |
Ejemplares similares
-
Generalizing Bayesian phylogenetics to infer shared evolutionary events
por: Oaks, Jamie R., et al.
Publicado: (2022) -
An R package VIGoR for joint estimation of multiple linear learners with variational Bayesian inference
por: Onogi, Akio, et al.
Publicado: (2022) -
Bayesian inference
por: Cardenas, Rosario O
Publicado: (2018) -
The Connection between Bayesian Inference and Information Theory for Model Selection, Information Gain and Experimental Design
por: Oladyshkin, Sergey, et al.
Publicado: (2019) -
Bayesian inference reveals positive but subtle effects of experimental fishery closures on marine predator demographics
por: Sherley, Richard B., et al.
Publicado: (2018)