Cargando…

Oxidative metabolism enables Salmonella evasion of the NLRP3 inflammasome

Microbial infection triggers assembly of inflammasome complexes that promote caspase-1–dependent antimicrobial responses. Inflammasome assembly is mediated by members of the nucleotide binding domain leucine-rich repeat (NLR) protein family that respond to cytosolic bacterial products or disruption...

Descripción completa

Detalles Bibliográficos
Autores principales: Wynosky-Dolfi, Meghan A., Snyder, Annelise G., Philip, Naomi H., Doonan, Patrick J., Poffenberger, Maya C., Avizonis, Daina, Zwack, Erin E., Riblett, Amber M., Hu, Baofeng, Strowig, Till, Flavell, Richard A., Jones, Russell G., Freedman, Bruce D., Brodsky, Igor E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Rockefeller University Press 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3978275/
https://www.ncbi.nlm.nih.gov/pubmed/24638169
http://dx.doi.org/10.1084/jem.20130627
_version_ 1782310538724769792
author Wynosky-Dolfi, Meghan A.
Snyder, Annelise G.
Philip, Naomi H.
Doonan, Patrick J.
Poffenberger, Maya C.
Avizonis, Daina
Zwack, Erin E.
Riblett, Amber M.
Hu, Baofeng
Strowig, Till
Flavell, Richard A.
Jones, Russell G.
Freedman, Bruce D.
Brodsky, Igor E.
author_facet Wynosky-Dolfi, Meghan A.
Snyder, Annelise G.
Philip, Naomi H.
Doonan, Patrick J.
Poffenberger, Maya C.
Avizonis, Daina
Zwack, Erin E.
Riblett, Amber M.
Hu, Baofeng
Strowig, Till
Flavell, Richard A.
Jones, Russell G.
Freedman, Bruce D.
Brodsky, Igor E.
author_sort Wynosky-Dolfi, Meghan A.
collection PubMed
description Microbial infection triggers assembly of inflammasome complexes that promote caspase-1–dependent antimicrobial responses. Inflammasome assembly is mediated by members of the nucleotide binding domain leucine-rich repeat (NLR) protein family that respond to cytosolic bacterial products or disruption of cellular processes. Flagellin injected into host cells by invading Salmonella induces inflammasome activation through NLRC4, whereas NLRP3 is required for inflammasome activation in response to multiple stimuli, including microbial infection, tissue damage, and metabolic dysregulation, through mechanisms that remain poorly understood. During systemic infection, Salmonella avoids NLRC4 inflammasome activation by down-regulating flagellin expression. Macrophages exhibit delayed NLRP3 inflammasome activation after Salmonella infection, suggesting that Salmonella may evade or prevent the rapid activation of the NLRP3 inflammasome. We therefore screened a Salmonella Typhimurium transposon library to identify bacterial factors that limit NLRP3 inflammasome activation. Surprisingly, absence of the Salmonella TCA enzyme aconitase induced rapid NLRP3 inflammasome activation. This inflammasome activation correlated with elevated levels of bacterial citrate, and required mitochondrial reactive oxygen species and bacterial citrate synthase. Importantly, Salmonella lacking aconitase displayed NLRP3- and caspase-1/11–dependent attenuation of virulence, and induced elevated serum IL-18 in wild-type mice. Together, our data link Salmonella genes controlling oxidative metabolism to inflammasome activation and suggest that NLRP3 inflammasome evasion promotes systemic Salmonella virulence.
format Online
Article
Text
id pubmed-3978275
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-39782752014-10-07 Oxidative metabolism enables Salmonella evasion of the NLRP3 inflammasome Wynosky-Dolfi, Meghan A. Snyder, Annelise G. Philip, Naomi H. Doonan, Patrick J. Poffenberger, Maya C. Avizonis, Daina Zwack, Erin E. Riblett, Amber M. Hu, Baofeng Strowig, Till Flavell, Richard A. Jones, Russell G. Freedman, Bruce D. Brodsky, Igor E. J Exp Med Article Microbial infection triggers assembly of inflammasome complexes that promote caspase-1–dependent antimicrobial responses. Inflammasome assembly is mediated by members of the nucleotide binding domain leucine-rich repeat (NLR) protein family that respond to cytosolic bacterial products or disruption of cellular processes. Flagellin injected into host cells by invading Salmonella induces inflammasome activation through NLRC4, whereas NLRP3 is required for inflammasome activation in response to multiple stimuli, including microbial infection, tissue damage, and metabolic dysregulation, through mechanisms that remain poorly understood. During systemic infection, Salmonella avoids NLRC4 inflammasome activation by down-regulating flagellin expression. Macrophages exhibit delayed NLRP3 inflammasome activation after Salmonella infection, suggesting that Salmonella may evade or prevent the rapid activation of the NLRP3 inflammasome. We therefore screened a Salmonella Typhimurium transposon library to identify bacterial factors that limit NLRP3 inflammasome activation. Surprisingly, absence of the Salmonella TCA enzyme aconitase induced rapid NLRP3 inflammasome activation. This inflammasome activation correlated with elevated levels of bacterial citrate, and required mitochondrial reactive oxygen species and bacterial citrate synthase. Importantly, Salmonella lacking aconitase displayed NLRP3- and caspase-1/11–dependent attenuation of virulence, and induced elevated serum IL-18 in wild-type mice. Together, our data link Salmonella genes controlling oxidative metabolism to inflammasome activation and suggest that NLRP3 inflammasome evasion promotes systemic Salmonella virulence. The Rockefeller University Press 2014-04-07 /pmc/articles/PMC3978275/ /pubmed/24638169 http://dx.doi.org/10.1084/jem.20130627 Text en © 2014 Wynosky-Dolfi et al. This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).
spellingShingle Article
Wynosky-Dolfi, Meghan A.
Snyder, Annelise G.
Philip, Naomi H.
Doonan, Patrick J.
Poffenberger, Maya C.
Avizonis, Daina
Zwack, Erin E.
Riblett, Amber M.
Hu, Baofeng
Strowig, Till
Flavell, Richard A.
Jones, Russell G.
Freedman, Bruce D.
Brodsky, Igor E.
Oxidative metabolism enables Salmonella evasion of the NLRP3 inflammasome
title Oxidative metabolism enables Salmonella evasion of the NLRP3 inflammasome
title_full Oxidative metabolism enables Salmonella evasion of the NLRP3 inflammasome
title_fullStr Oxidative metabolism enables Salmonella evasion of the NLRP3 inflammasome
title_full_unstemmed Oxidative metabolism enables Salmonella evasion of the NLRP3 inflammasome
title_short Oxidative metabolism enables Salmonella evasion of the NLRP3 inflammasome
title_sort oxidative metabolism enables salmonella evasion of the nlrp3 inflammasome
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3978275/
https://www.ncbi.nlm.nih.gov/pubmed/24638169
http://dx.doi.org/10.1084/jem.20130627
work_keys_str_mv AT wynoskydolfimeghana oxidativemetabolismenablessalmonellaevasionofthenlrp3inflammasome
AT snyderanneliseg oxidativemetabolismenablessalmonellaevasionofthenlrp3inflammasome
AT philipnaomih oxidativemetabolismenablessalmonellaevasionofthenlrp3inflammasome
AT doonanpatrickj oxidativemetabolismenablessalmonellaevasionofthenlrp3inflammasome
AT poffenbergermayac oxidativemetabolismenablessalmonellaevasionofthenlrp3inflammasome
AT avizonisdaina oxidativemetabolismenablessalmonellaevasionofthenlrp3inflammasome
AT zwackerine oxidativemetabolismenablessalmonellaevasionofthenlrp3inflammasome
AT riblettamberm oxidativemetabolismenablessalmonellaevasionofthenlrp3inflammasome
AT hubaofeng oxidativemetabolismenablessalmonellaevasionofthenlrp3inflammasome
AT strowigtill oxidativemetabolismenablessalmonellaevasionofthenlrp3inflammasome
AT flavellricharda oxidativemetabolismenablessalmonellaevasionofthenlrp3inflammasome
AT jonesrussellg oxidativemetabolismenablessalmonellaevasionofthenlrp3inflammasome
AT freedmanbruced oxidativemetabolismenablessalmonellaevasionofthenlrp3inflammasome
AT brodskyigore oxidativemetabolismenablessalmonellaevasionofthenlrp3inflammasome