Cargando…
Oxidative metabolism enables Salmonella evasion of the NLRP3 inflammasome
Microbial infection triggers assembly of inflammasome complexes that promote caspase-1–dependent antimicrobial responses. Inflammasome assembly is mediated by members of the nucleotide binding domain leucine-rich repeat (NLR) protein family that respond to cytosolic bacterial products or disruption...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3978275/ https://www.ncbi.nlm.nih.gov/pubmed/24638169 http://dx.doi.org/10.1084/jem.20130627 |
_version_ | 1782310538724769792 |
---|---|
author | Wynosky-Dolfi, Meghan A. Snyder, Annelise G. Philip, Naomi H. Doonan, Patrick J. Poffenberger, Maya C. Avizonis, Daina Zwack, Erin E. Riblett, Amber M. Hu, Baofeng Strowig, Till Flavell, Richard A. Jones, Russell G. Freedman, Bruce D. Brodsky, Igor E. |
author_facet | Wynosky-Dolfi, Meghan A. Snyder, Annelise G. Philip, Naomi H. Doonan, Patrick J. Poffenberger, Maya C. Avizonis, Daina Zwack, Erin E. Riblett, Amber M. Hu, Baofeng Strowig, Till Flavell, Richard A. Jones, Russell G. Freedman, Bruce D. Brodsky, Igor E. |
author_sort | Wynosky-Dolfi, Meghan A. |
collection | PubMed |
description | Microbial infection triggers assembly of inflammasome complexes that promote caspase-1–dependent antimicrobial responses. Inflammasome assembly is mediated by members of the nucleotide binding domain leucine-rich repeat (NLR) protein family that respond to cytosolic bacterial products or disruption of cellular processes. Flagellin injected into host cells by invading Salmonella induces inflammasome activation through NLRC4, whereas NLRP3 is required for inflammasome activation in response to multiple stimuli, including microbial infection, tissue damage, and metabolic dysregulation, through mechanisms that remain poorly understood. During systemic infection, Salmonella avoids NLRC4 inflammasome activation by down-regulating flagellin expression. Macrophages exhibit delayed NLRP3 inflammasome activation after Salmonella infection, suggesting that Salmonella may evade or prevent the rapid activation of the NLRP3 inflammasome. We therefore screened a Salmonella Typhimurium transposon library to identify bacterial factors that limit NLRP3 inflammasome activation. Surprisingly, absence of the Salmonella TCA enzyme aconitase induced rapid NLRP3 inflammasome activation. This inflammasome activation correlated with elevated levels of bacterial citrate, and required mitochondrial reactive oxygen species and bacterial citrate synthase. Importantly, Salmonella lacking aconitase displayed NLRP3- and caspase-1/11–dependent attenuation of virulence, and induced elevated serum IL-18 in wild-type mice. Together, our data link Salmonella genes controlling oxidative metabolism to inflammasome activation and suggest that NLRP3 inflammasome evasion promotes systemic Salmonella virulence. |
format | Online Article Text |
id | pubmed-3978275 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-39782752014-10-07 Oxidative metabolism enables Salmonella evasion of the NLRP3 inflammasome Wynosky-Dolfi, Meghan A. Snyder, Annelise G. Philip, Naomi H. Doonan, Patrick J. Poffenberger, Maya C. Avizonis, Daina Zwack, Erin E. Riblett, Amber M. Hu, Baofeng Strowig, Till Flavell, Richard A. Jones, Russell G. Freedman, Bruce D. Brodsky, Igor E. J Exp Med Article Microbial infection triggers assembly of inflammasome complexes that promote caspase-1–dependent antimicrobial responses. Inflammasome assembly is mediated by members of the nucleotide binding domain leucine-rich repeat (NLR) protein family that respond to cytosolic bacterial products or disruption of cellular processes. Flagellin injected into host cells by invading Salmonella induces inflammasome activation through NLRC4, whereas NLRP3 is required for inflammasome activation in response to multiple stimuli, including microbial infection, tissue damage, and metabolic dysregulation, through mechanisms that remain poorly understood. During systemic infection, Salmonella avoids NLRC4 inflammasome activation by down-regulating flagellin expression. Macrophages exhibit delayed NLRP3 inflammasome activation after Salmonella infection, suggesting that Salmonella may evade or prevent the rapid activation of the NLRP3 inflammasome. We therefore screened a Salmonella Typhimurium transposon library to identify bacterial factors that limit NLRP3 inflammasome activation. Surprisingly, absence of the Salmonella TCA enzyme aconitase induced rapid NLRP3 inflammasome activation. This inflammasome activation correlated with elevated levels of bacterial citrate, and required mitochondrial reactive oxygen species and bacterial citrate synthase. Importantly, Salmonella lacking aconitase displayed NLRP3- and caspase-1/11–dependent attenuation of virulence, and induced elevated serum IL-18 in wild-type mice. Together, our data link Salmonella genes controlling oxidative metabolism to inflammasome activation and suggest that NLRP3 inflammasome evasion promotes systemic Salmonella virulence. The Rockefeller University Press 2014-04-07 /pmc/articles/PMC3978275/ /pubmed/24638169 http://dx.doi.org/10.1084/jem.20130627 Text en © 2014 Wynosky-Dolfi et al. This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/). |
spellingShingle | Article Wynosky-Dolfi, Meghan A. Snyder, Annelise G. Philip, Naomi H. Doonan, Patrick J. Poffenberger, Maya C. Avizonis, Daina Zwack, Erin E. Riblett, Amber M. Hu, Baofeng Strowig, Till Flavell, Richard A. Jones, Russell G. Freedman, Bruce D. Brodsky, Igor E. Oxidative metabolism enables Salmonella evasion of the NLRP3 inflammasome |
title | Oxidative metabolism enables Salmonella evasion of the NLRP3 inflammasome |
title_full | Oxidative metabolism enables Salmonella evasion of the NLRP3 inflammasome |
title_fullStr | Oxidative metabolism enables Salmonella evasion of the NLRP3 inflammasome |
title_full_unstemmed | Oxidative metabolism enables Salmonella evasion of the NLRP3 inflammasome |
title_short | Oxidative metabolism enables Salmonella evasion of the NLRP3 inflammasome |
title_sort | oxidative metabolism enables salmonella evasion of the nlrp3 inflammasome |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3978275/ https://www.ncbi.nlm.nih.gov/pubmed/24638169 http://dx.doi.org/10.1084/jem.20130627 |
work_keys_str_mv | AT wynoskydolfimeghana oxidativemetabolismenablessalmonellaevasionofthenlrp3inflammasome AT snyderanneliseg oxidativemetabolismenablessalmonellaevasionofthenlrp3inflammasome AT philipnaomih oxidativemetabolismenablessalmonellaevasionofthenlrp3inflammasome AT doonanpatrickj oxidativemetabolismenablessalmonellaevasionofthenlrp3inflammasome AT poffenbergermayac oxidativemetabolismenablessalmonellaevasionofthenlrp3inflammasome AT avizonisdaina oxidativemetabolismenablessalmonellaevasionofthenlrp3inflammasome AT zwackerine oxidativemetabolismenablessalmonellaevasionofthenlrp3inflammasome AT riblettamberm oxidativemetabolismenablessalmonellaevasionofthenlrp3inflammasome AT hubaofeng oxidativemetabolismenablessalmonellaevasionofthenlrp3inflammasome AT strowigtill oxidativemetabolismenablessalmonellaevasionofthenlrp3inflammasome AT flavellricharda oxidativemetabolismenablessalmonellaevasionofthenlrp3inflammasome AT jonesrussellg oxidativemetabolismenablessalmonellaevasionofthenlrp3inflammasome AT freedmanbruced oxidativemetabolismenablessalmonellaevasionofthenlrp3inflammasome AT brodskyigore oxidativemetabolismenablessalmonellaevasionofthenlrp3inflammasome |