Cargando…
Low temperature hydrogenation of iron nanoparticles on graphene
Hydrogenation of iron nanoparticles was performed both computationally and experimentally where previously chemically-bonded iron hydride is considered to be unachievable under ordinary conditions. Density functional theory (DFT) calculations predict that hydrogenated iron nanoparticles are stabiliz...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3978499/ https://www.ncbi.nlm.nih.gov/pubmed/24710406 http://dx.doi.org/10.1038/srep04598 |
Sumario: | Hydrogenation of iron nanoparticles was performed both computationally and experimentally where previously chemically-bonded iron hydride is considered to be unachievable under ordinary conditions. Density functional theory (DFT) calculations predict that hydrogenated iron nanoparticles are stabilized on a single-layer graphene/Cu substrate. Experimentally, iron nanoparticles were deposited onto a graphene/Cu substrate by vacuum deposition. Hydrogenation was done at 1atm of hydrogen gas and under liquid nitrogen. Mass spectrometry peak confirmed the hydrogen release from hydrogenated iron nanoparticles while a scanning transmission electron microscopy is used in order to link a geometrical shape of iron hydride nanoparticles between experimental and theoretical treatments. The hydrogenated iron nanoparticles were successfully synthesized where hydrogenated iron nanoparticles are stable under ordinary conditions. |
---|