Cargando…
Independent associations of total and high molecular weight adiponectin with cardiometabolic risk and surrogate markers of enhanced early atherogenesis in black and white patients with rheumatoid arthritis: a cross-sectional study
INTRODUCTION: Whether adiponectin levels associate with atherogenesis in RA is uncertain. We examined the independent relationships of total and high molecular weight (HMW) adiponectin concentrations with cardiometabolic risk and surrogate markers of enhanced early atherogenesis in black and white p...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3978563/ https://www.ncbi.nlm.nih.gov/pubmed/24286214 http://dx.doi.org/10.1186/ar4308 |
Sumario: | INTRODUCTION: Whether adiponectin levels associate with atherogenesis in RA is uncertain. We examined the independent relationships of total and high molecular weight (HMW) adiponectin concentrations with cardiometabolic risk and surrogate markers of enhanced early atherogenesis in black and white patients with RA. METHODS: We determined total and HMW adiponectin concentrations and those of endothelial activation molecules including soluble E-selectin, vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1) and monocyte chemoattractant protein-1 (MCP-1), in 210 (119 black and 91 white) RA patients. Associations were determined in potential confounder and mediator adjusted mixed regression models. RESULTS: Total and HMW adiponectin concentrations related similarly to metabolic risk factors and endothelial activation. In all patients, total and HMW adiponectin concentrations associated paradoxically with high systolic, diastolic and mean blood pressure (partial R = 0.155 to 0.241, P ≤0.03). Ethnic origin did not impact on these relationships (interaction P ≥0.09). Total and HMW adiponectin concentrations associated with those of glucose in white and black patients respectively (partial R = -0.304, P = 0.006 and -0.246, P = 0.01). In black but not white participants, total and HMW adiponectin concentrations also related favorably to lipid profiles (partial R = 0.292 to 0.360, P ≤0.003 for HDL cholesterol concentrations, -0.269 to -0.299, P ≤0.006 for triglyceride concentrations and -0.302 to -0.390, P ≤0.002 for total-HDL cholesterol ratio) and the number of metabolic risk factors (partial R = -0.210 to -0.238, P ≤0.03). In white but not black patients, total and HMW adiponectin concentrations associated paradoxically with overall endothelial activation as estimated by a standard z-score of endothelial activation molecule concentrations (partial R = 0.262, P = 0.01 and 0.252, P = 0.02); in the respective models, the extent of effect of total and HMW adiponectin concentrations on endothelial activation was larger in white compared to black participants (standardized β (SE) = 0.260 (0.107) versus -0.106 (0.107), P = 0.01 and 0.260 (0.120) versus -0.100 (0.111), P = 0.02). The HMW-total adiponectin ratio related inconsistently to metabolic risk factors and not to endothelial activation. CONCLUSION: In this study, total and HMW adiponectin concentrations associated with increased blood pressure parameters, and in white patients additionally with endothelial activation. The potential mechanism(s) underlying these paradoxical relationships between adiponectin concentrations and cardiovascular risk in RA merit further investigation. |
---|