Cargando…
Identifying driver mutations in sequenced cancer genomes: computational approaches to enable precision medicine
High-throughput DNA sequencing is revolutionizing the study of cancer and enabling the measurement of the somatic mutations that drive cancer development. However, the resulting sequencing datasets are large and complex, obscuring the clinically important mutations in a background of errors, noise,...
Autores principales: | Raphael, Benjamin J, Dobson, Jason R, Oesper, Layla, Vandin, Fabio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3978567/ https://www.ncbi.nlm.nih.gov/pubmed/24479672 http://dx.doi.org/10.1186/gm524 |
Ejemplares similares
-
Identifying simultaneous rearrangements in cancer genomes
por: Oesper, Layla, et al.
Publicado: (2018) -
Finding driver pathways in cancer: models and algorithms
por: Vandin, Fabio, et al.
Publicado: (2012) -
THetA: inferring intra-tumor heterogeneity from high-throughput DNA sequencing data
por: Oesper, Layla, et al.
Publicado: (2013) -
Computational Methods for Characterizing Cancer Mutational Heterogeneity
por: Vandin, Fabio
Publicado: (2017) -
Reconstruction of clonal trees and tumor composition from multi-sample sequencing data
por: El-Kebir, Mohammed, et al.
Publicado: (2015)