Cargando…

A mitochondria-targeted mass spectrometry probe to detect glyoxals: implications for diabetes()

The glycation of protein and nucleic acids that occurs as a consequence of hyperglycemia disrupts cell function and contributes to many pathologies, including those associated with diabetes and aging. Intracellular glycation occurs after the generation of the reactive 1,2-dicarbonyls methylglyoxal a...

Descripción completa

Detalles Bibliográficos
Autores principales: Pun, Pamela Boon Li, Logan, Angela, Darley-Usmar, Victor, Chacko, Balu, Johnson, Michelle S., Huang, Guang W., Rogatti, Sebastian, Prime, Tracy A., Methner, Carmen, Krieg, Thomas, Fearnley, Ian M., Larsen, Lesley, Larsen, David S., Menger, Katja E., Collins, Yvonne, James, Andrew M., Kumar, G.D. Kishore, Hartley, Richard C., Smith, Robin A.J., Murphy, Michael P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3978666/
https://www.ncbi.nlm.nih.gov/pubmed/24316194
http://dx.doi.org/10.1016/j.freeradbiomed.2013.11.025
_version_ 1782310610687492096
author Pun, Pamela Boon Li
Logan, Angela
Darley-Usmar, Victor
Chacko, Balu
Johnson, Michelle S.
Huang, Guang W.
Rogatti, Sebastian
Prime, Tracy A.
Methner, Carmen
Krieg, Thomas
Fearnley, Ian M.
Larsen, Lesley
Larsen, David S.
Menger, Katja E.
Collins, Yvonne
James, Andrew M.
Kumar, G.D. Kishore
Hartley, Richard C.
Smith, Robin A.J.
Murphy, Michael P.
author_facet Pun, Pamela Boon Li
Logan, Angela
Darley-Usmar, Victor
Chacko, Balu
Johnson, Michelle S.
Huang, Guang W.
Rogatti, Sebastian
Prime, Tracy A.
Methner, Carmen
Krieg, Thomas
Fearnley, Ian M.
Larsen, Lesley
Larsen, David S.
Menger, Katja E.
Collins, Yvonne
James, Andrew M.
Kumar, G.D. Kishore
Hartley, Richard C.
Smith, Robin A.J.
Murphy, Michael P.
author_sort Pun, Pamela Boon Li
collection PubMed
description The glycation of protein and nucleic acids that occurs as a consequence of hyperglycemia disrupts cell function and contributes to many pathologies, including those associated with diabetes and aging. Intracellular glycation occurs after the generation of the reactive 1,2-dicarbonyls methylglyoxal and glyoxal, and disruption of mitochondrial function is associated with hyperglycemia. However, the contribution of these reactive dicarbonyls to mitochondrial damage in pathology is unclear owing to uncertainties about their levels within mitochondria in cells and in vivo. To address this we have developed a mitochondria-targeted reagent (MitoG) designed to assess the levels of mitochondrial dicarbonyls within cells. MitoG comprises a lipophilic triphenylphosphonium cationic function, which directs the molecules to mitochondria within cells, and an o-phenylenediamine moiety that reacts with dicarbonyls to give distinctive and stable products. The extent of accumulation of these diagnostic heterocyclic products can be readily and sensitively quantified by liquid chromatography–tandem mass spectrometry, enabling changes to be determined. Using the MitoG-based analysis we assessed the formation of methylglyoxal and glyoxal in response to hyperglycemia in cells in culture and in the Akita mouse model of diabetes in vivo. These findings indicated that the levels of methylglyoxal and glyoxal within mitochondria increase during hyperglycemia both in cells and in vivo, suggesting that they can contribute to the pathological mitochondrial dysfunction that occurs in diabetes and aging.
format Online
Article
Text
id pubmed-3978666
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Elsevier Science
record_format MEDLINE/PubMed
spelling pubmed-39786662014-04-09 A mitochondria-targeted mass spectrometry probe to detect glyoxals: implications for diabetes() Pun, Pamela Boon Li Logan, Angela Darley-Usmar, Victor Chacko, Balu Johnson, Michelle S. Huang, Guang W. Rogatti, Sebastian Prime, Tracy A. Methner, Carmen Krieg, Thomas Fearnley, Ian M. Larsen, Lesley Larsen, David S. Menger, Katja E. Collins, Yvonne James, Andrew M. Kumar, G.D. Kishore Hartley, Richard C. Smith, Robin A.J. Murphy, Michael P. Free Radic Biol Med Original Contribution The glycation of protein and nucleic acids that occurs as a consequence of hyperglycemia disrupts cell function and contributes to many pathologies, including those associated with diabetes and aging. Intracellular glycation occurs after the generation of the reactive 1,2-dicarbonyls methylglyoxal and glyoxal, and disruption of mitochondrial function is associated with hyperglycemia. However, the contribution of these reactive dicarbonyls to mitochondrial damage in pathology is unclear owing to uncertainties about their levels within mitochondria in cells and in vivo. To address this we have developed a mitochondria-targeted reagent (MitoG) designed to assess the levels of mitochondrial dicarbonyls within cells. MitoG comprises a lipophilic triphenylphosphonium cationic function, which directs the molecules to mitochondria within cells, and an o-phenylenediamine moiety that reacts with dicarbonyls to give distinctive and stable products. The extent of accumulation of these diagnostic heterocyclic products can be readily and sensitively quantified by liquid chromatography–tandem mass spectrometry, enabling changes to be determined. Using the MitoG-based analysis we assessed the formation of methylglyoxal and glyoxal in response to hyperglycemia in cells in culture and in the Akita mouse model of diabetes in vivo. These findings indicated that the levels of methylglyoxal and glyoxal within mitochondria increase during hyperglycemia both in cells and in vivo, suggesting that they can contribute to the pathological mitochondrial dysfunction that occurs in diabetes and aging. Elsevier Science 2014-02 /pmc/articles/PMC3978666/ /pubmed/24316194 http://dx.doi.org/10.1016/j.freeradbiomed.2013.11.025 Text en © 2013 The Authors http://creativecommons.org/licenses/by-nc-sa/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike License, which permits non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Original Contribution
Pun, Pamela Boon Li
Logan, Angela
Darley-Usmar, Victor
Chacko, Balu
Johnson, Michelle S.
Huang, Guang W.
Rogatti, Sebastian
Prime, Tracy A.
Methner, Carmen
Krieg, Thomas
Fearnley, Ian M.
Larsen, Lesley
Larsen, David S.
Menger, Katja E.
Collins, Yvonne
James, Andrew M.
Kumar, G.D. Kishore
Hartley, Richard C.
Smith, Robin A.J.
Murphy, Michael P.
A mitochondria-targeted mass spectrometry probe to detect glyoxals: implications for diabetes()
title A mitochondria-targeted mass spectrometry probe to detect glyoxals: implications for diabetes()
title_full A mitochondria-targeted mass spectrometry probe to detect glyoxals: implications for diabetes()
title_fullStr A mitochondria-targeted mass spectrometry probe to detect glyoxals: implications for diabetes()
title_full_unstemmed A mitochondria-targeted mass spectrometry probe to detect glyoxals: implications for diabetes()
title_short A mitochondria-targeted mass spectrometry probe to detect glyoxals: implications for diabetes()
title_sort mitochondria-targeted mass spectrometry probe to detect glyoxals: implications for diabetes()
topic Original Contribution
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3978666/
https://www.ncbi.nlm.nih.gov/pubmed/24316194
http://dx.doi.org/10.1016/j.freeradbiomed.2013.11.025
work_keys_str_mv AT punpamelaboonli amitochondriatargetedmassspectrometryprobetodetectglyoxalsimplicationsfordiabetes
AT loganangela amitochondriatargetedmassspectrometryprobetodetectglyoxalsimplicationsfordiabetes
AT darleyusmarvictor amitochondriatargetedmassspectrometryprobetodetectglyoxalsimplicationsfordiabetes
AT chackobalu amitochondriatargetedmassspectrometryprobetodetectglyoxalsimplicationsfordiabetes
AT johnsonmichelles amitochondriatargetedmassspectrometryprobetodetectglyoxalsimplicationsfordiabetes
AT huangguangw amitochondriatargetedmassspectrometryprobetodetectglyoxalsimplicationsfordiabetes
AT rogattisebastian amitochondriatargetedmassspectrometryprobetodetectglyoxalsimplicationsfordiabetes
AT primetracya amitochondriatargetedmassspectrometryprobetodetectglyoxalsimplicationsfordiabetes
AT methnercarmen amitochondriatargetedmassspectrometryprobetodetectglyoxalsimplicationsfordiabetes
AT kriegthomas amitochondriatargetedmassspectrometryprobetodetectglyoxalsimplicationsfordiabetes
AT fearnleyianm amitochondriatargetedmassspectrometryprobetodetectglyoxalsimplicationsfordiabetes
AT larsenlesley amitochondriatargetedmassspectrometryprobetodetectglyoxalsimplicationsfordiabetes
AT larsendavids amitochondriatargetedmassspectrometryprobetodetectglyoxalsimplicationsfordiabetes
AT mengerkatjae amitochondriatargetedmassspectrometryprobetodetectglyoxalsimplicationsfordiabetes
AT collinsyvonne amitochondriatargetedmassspectrometryprobetodetectglyoxalsimplicationsfordiabetes
AT jamesandrewm amitochondriatargetedmassspectrometryprobetodetectglyoxalsimplicationsfordiabetes
AT kumargdkishore amitochondriatargetedmassspectrometryprobetodetectglyoxalsimplicationsfordiabetes
AT hartleyrichardc amitochondriatargetedmassspectrometryprobetodetectglyoxalsimplicationsfordiabetes
AT smithrobinaj amitochondriatargetedmassspectrometryprobetodetectglyoxalsimplicationsfordiabetes
AT murphymichaelp amitochondriatargetedmassspectrometryprobetodetectglyoxalsimplicationsfordiabetes
AT punpamelaboonli mitochondriatargetedmassspectrometryprobetodetectglyoxalsimplicationsfordiabetes
AT loganangela mitochondriatargetedmassspectrometryprobetodetectglyoxalsimplicationsfordiabetes
AT darleyusmarvictor mitochondriatargetedmassspectrometryprobetodetectglyoxalsimplicationsfordiabetes
AT chackobalu mitochondriatargetedmassspectrometryprobetodetectglyoxalsimplicationsfordiabetes
AT johnsonmichelles mitochondriatargetedmassspectrometryprobetodetectglyoxalsimplicationsfordiabetes
AT huangguangw mitochondriatargetedmassspectrometryprobetodetectglyoxalsimplicationsfordiabetes
AT rogattisebastian mitochondriatargetedmassspectrometryprobetodetectglyoxalsimplicationsfordiabetes
AT primetracya mitochondriatargetedmassspectrometryprobetodetectglyoxalsimplicationsfordiabetes
AT methnercarmen mitochondriatargetedmassspectrometryprobetodetectglyoxalsimplicationsfordiabetes
AT kriegthomas mitochondriatargetedmassspectrometryprobetodetectglyoxalsimplicationsfordiabetes
AT fearnleyianm mitochondriatargetedmassspectrometryprobetodetectglyoxalsimplicationsfordiabetes
AT larsenlesley mitochondriatargetedmassspectrometryprobetodetectglyoxalsimplicationsfordiabetes
AT larsendavids mitochondriatargetedmassspectrometryprobetodetectglyoxalsimplicationsfordiabetes
AT mengerkatjae mitochondriatargetedmassspectrometryprobetodetectglyoxalsimplicationsfordiabetes
AT collinsyvonne mitochondriatargetedmassspectrometryprobetodetectglyoxalsimplicationsfordiabetes
AT jamesandrewm mitochondriatargetedmassspectrometryprobetodetectglyoxalsimplicationsfordiabetes
AT kumargdkishore mitochondriatargetedmassspectrometryprobetodetectglyoxalsimplicationsfordiabetes
AT hartleyrichardc mitochondriatargetedmassspectrometryprobetodetectglyoxalsimplicationsfordiabetes
AT smithrobinaj mitochondriatargetedmassspectrometryprobetodetectglyoxalsimplicationsfordiabetes
AT murphymichaelp mitochondriatargetedmassspectrometryprobetodetectglyoxalsimplicationsfordiabetes