Cargando…

Sox4, EMT programs, and the metastatic progression of breast cancers: mastering the masters of EMT

Epithelial-mesenchymal transition (EMT) programs require the expression of a variety of so-called master regulators of EMT, including members of the Snail, Zeb, and Twist transcription factor families. Teleologically, the requirement for such a diverse group of ‘master regulators’ seems evolutionari...

Descripción completa

Detalles Bibliográficos
Autores principales: Parvani, Jenny G, Schiemann, William P
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3979076/
https://www.ncbi.nlm.nih.gov/pubmed/23981787
http://dx.doi.org/10.1186/bcr3466
Descripción
Sumario:Epithelial-mesenchymal transition (EMT) programs require the expression of a variety of so-called master regulators of EMT, including members of the Snail, Zeb, and Twist transcription factor families. Teleologically, the requirement for such a diverse group of ‘master regulators’ seems evolutionarily cumbersome, and emerging evidence indicates that these transcription factors do in fact mediate unique and specialized functions, suggesting the existence of higher-order ‘masters’ that truly direct and coordinate EMT programs. Accordingly, Tiwari and colleagues recently delineated an elegant pathway wherein transforming growth factor-beta stimulates Sox4 expression, which induces that of the histone methyltransferase, Ezh2, thereby reprogramming the epigenome to elicit EMT programs and metastasis of breast cancers. This viewpoint highlights Sox4 as a ‘new’ master of EMT programs and metastatic breast cancer.