Cargando…
Conformational Properties of α- or β-(1→6)-Linked Oligosaccharides: Hamiltonian Replica Exchange MD Simulations and NMR Experiments
[Image: see text] Conformational sampling for a set of 10 α- or β-(1→6)-linked oligosaccharides has been studied using explicit solvent Hamiltonian replica exchange (HREX) simulations and NMR spectroscopy techniques. Validation of the force field and simulation methodology is done by comparing calcu...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2014
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3979472/ https://www.ncbi.nlm.nih.gov/pubmed/24552401 http://dx.doi.org/10.1021/jp412051v |
_version_ | 1782310731441504256 |
---|---|
author | Patel, Dhilon S. Pendrill, Robert Mallajosyula, Sairam S. Widmalm, Göran MacKerell, Alexander D. |
author_facet | Patel, Dhilon S. Pendrill, Robert Mallajosyula, Sairam S. Widmalm, Göran MacKerell, Alexander D. |
author_sort | Patel, Dhilon S. |
collection | PubMed |
description | [Image: see text] Conformational sampling for a set of 10 α- or β-(1→6)-linked oligosaccharides has been studied using explicit solvent Hamiltonian replica exchange (HREX) simulations and NMR spectroscopy techniques. Validation of the force field and simulation methodology is done by comparing calculated transglycosidic J coupling constants and proton–proton distances with the corresponding NMR data. Initial calculations showed poor agreement, for example, with >3 Hz deviation of the calculated (3)J(H5,H6R) values from the experimental data, prompting optimization of the ω torsion angle parameters associated with (1→6)-linkages. The resulting force field is in overall good agreement (i.e., within ∼0.5 Hz deviation) from experimental (3)J(H5,H6R) values, although some small limitations are evident. Detailed hydrogen bonding analysis indicates that most of the compounds lack direct intramolecular H-bonds between the two monosaccharides; however, minor sampling of the O6···HO2′ hydrogen bond is present in three compounds. The results verify the role of the gauche effect between O5 and O6 atoms in gluco- and manno-configured pyranosides causing the ω torsion angle to sample an equilibrium between the gt and gg rotamers. Conversely, galacto-configured pyranosides sample a population distribution in equilibrium between gt and tg rotamers, while the gg rotamer populations are minor. Water radial distribution functions suggest decreased accessibility to the O6 atom in the (1→6)-linkage as compared to the O6′ atom in the nonreducing sugar. The role of bridging water molecules between two sugar moieties on the distributions of ω torsion angles in oligosaccharides is also explored. |
format | Online Article Text |
id | pubmed-3979472 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | American Chemical
Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-39794722015-02-19 Conformational Properties of α- or β-(1→6)-Linked Oligosaccharides: Hamiltonian Replica Exchange MD Simulations and NMR Experiments Patel, Dhilon S. Pendrill, Robert Mallajosyula, Sairam S. Widmalm, Göran MacKerell, Alexander D. J Phys Chem B [Image: see text] Conformational sampling for a set of 10 α- or β-(1→6)-linked oligosaccharides has been studied using explicit solvent Hamiltonian replica exchange (HREX) simulations and NMR spectroscopy techniques. Validation of the force field and simulation methodology is done by comparing calculated transglycosidic J coupling constants and proton–proton distances with the corresponding NMR data. Initial calculations showed poor agreement, for example, with >3 Hz deviation of the calculated (3)J(H5,H6R) values from the experimental data, prompting optimization of the ω torsion angle parameters associated with (1→6)-linkages. The resulting force field is in overall good agreement (i.e., within ∼0.5 Hz deviation) from experimental (3)J(H5,H6R) values, although some small limitations are evident. Detailed hydrogen bonding analysis indicates that most of the compounds lack direct intramolecular H-bonds between the two monosaccharides; however, minor sampling of the O6···HO2′ hydrogen bond is present in three compounds. The results verify the role of the gauche effect between O5 and O6 atoms in gluco- and manno-configured pyranosides causing the ω torsion angle to sample an equilibrium between the gt and gg rotamers. Conversely, galacto-configured pyranosides sample a population distribution in equilibrium between gt and tg rotamers, while the gg rotamer populations are minor. Water radial distribution functions suggest decreased accessibility to the O6 atom in the (1→6)-linkage as compared to the O6′ atom in the nonreducing sugar. The role of bridging water molecules between two sugar moieties on the distributions of ω torsion angles in oligosaccharides is also explored. American Chemical Society 2014-02-19 2014-03-20 /pmc/articles/PMC3979472/ /pubmed/24552401 http://dx.doi.org/10.1021/jp412051v Text en Copyright © 2014 American Chemical Society |
spellingShingle | Patel, Dhilon S. Pendrill, Robert Mallajosyula, Sairam S. Widmalm, Göran MacKerell, Alexander D. Conformational Properties of α- or β-(1→6)-Linked Oligosaccharides: Hamiltonian Replica Exchange MD Simulations and NMR Experiments |
title | Conformational
Properties of α- or β-(1→6)-Linked
Oligosaccharides: Hamiltonian Replica Exchange MD Simulations and
NMR Experiments |
title_full | Conformational
Properties of α- or β-(1→6)-Linked
Oligosaccharides: Hamiltonian Replica Exchange MD Simulations and
NMR Experiments |
title_fullStr | Conformational
Properties of α- or β-(1→6)-Linked
Oligosaccharides: Hamiltonian Replica Exchange MD Simulations and
NMR Experiments |
title_full_unstemmed | Conformational
Properties of α- or β-(1→6)-Linked
Oligosaccharides: Hamiltonian Replica Exchange MD Simulations and
NMR Experiments |
title_short | Conformational
Properties of α- or β-(1→6)-Linked
Oligosaccharides: Hamiltonian Replica Exchange MD Simulations and
NMR Experiments |
title_sort | conformational
properties of α- or β-(1→6)-linked
oligosaccharides: hamiltonian replica exchange md simulations and
nmr experiments |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3979472/ https://www.ncbi.nlm.nih.gov/pubmed/24552401 http://dx.doi.org/10.1021/jp412051v |
work_keys_str_mv | AT pateldhilons conformationalpropertiesofaorb16linkedoligosaccharideshamiltonianreplicaexchangemdsimulationsandnmrexperiments AT pendrillrobert conformationalpropertiesofaorb16linkedoligosaccharideshamiltonianreplicaexchangemdsimulationsandnmrexperiments AT mallajosyulasairams conformationalpropertiesofaorb16linkedoligosaccharideshamiltonianreplicaexchangemdsimulationsandnmrexperiments AT widmalmgoran conformationalpropertiesofaorb16linkedoligosaccharideshamiltonianreplicaexchangemdsimulationsandnmrexperiments AT mackerellalexanderd conformationalpropertiesofaorb16linkedoligosaccharideshamiltonianreplicaexchangemdsimulationsandnmrexperiments |