Cargando…
Dexamethasone Alleviates Tumor-Associated Brain Damage and Angiogenesis
Children and adults with the most aggressive form of brain cancer, malignant gliomas or glioblastoma, often develop cerebral edema as a life-threatening complication. This complication is routinely treated with dexamethasone (DEXA), a steroidal anti-inflammatory drug with pleiotropic action profile....
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3979667/ https://www.ncbi.nlm.nih.gov/pubmed/24714627 http://dx.doi.org/10.1371/journal.pone.0093264 |
_version_ | 1782310740014661632 |
---|---|
author | Fan, Zheng Sehm, Tina Rauh, Manfred Buchfelder, Michael Eyupoglu, Ilker Y. Savaskan, Nicolai E. |
author_facet | Fan, Zheng Sehm, Tina Rauh, Manfred Buchfelder, Michael Eyupoglu, Ilker Y. Savaskan, Nicolai E. |
author_sort | Fan, Zheng |
collection | PubMed |
description | Children and adults with the most aggressive form of brain cancer, malignant gliomas or glioblastoma, often develop cerebral edema as a life-threatening complication. This complication is routinely treated with dexamethasone (DEXA), a steroidal anti-inflammatory drug with pleiotropic action profile. Here we show that dexamethasone reduces murine and rodent glioma tumor growth in a concentration-dependent manner. Low concentrations of DEXA are already capable of inhibiting glioma cell proliferation and at higher levels induce cell death. Further, the expression of the glutamate antiporter xCT (system X(c) (−); SLC7a11) and VEGFA is up-regulated after DEXA treatment indicating early cellular stress responses. However, in human gliomas DEXA exerts differential cytotoxic effects, with some human glioma cells (U251, T98G) resistant to DEXA, a finding corroborated by clinical data of dexamethasone non-responders. Moreover, DEXA-resistant gliomas did not show any xCT alterations, indicating that these gene expressions are associated with DEXA-induced cellular stress. Hence, siRNA-mediated xCT knockdown in glioma cells increased the susceptibility to DEXA. Interestingly, cell viability of primary human astrocytes and primary rodent neurons is not affected by DEXA. We further tested the pharmacological effects of DEXA on brain tissue and showed that DEXA reduces tumor-induced disturbances of the microenvironment such as neuronal cell death and tumor-induced angiogenesis. In conclusion, we demonstrate that DEXA inhibits glioma cell growth in a concentration and species-dependent manner. Further, DEXA executes neuroprotective effects in brains and reduces tumor-induced angiogenesis. Thus, our investigations reveal that DEXA acts pleiotropically and impacts tumor growth, tumor vasculature and tumor-associated brain damage. |
format | Online Article Text |
id | pubmed-3979667 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-39796672014-04-11 Dexamethasone Alleviates Tumor-Associated Brain Damage and Angiogenesis Fan, Zheng Sehm, Tina Rauh, Manfred Buchfelder, Michael Eyupoglu, Ilker Y. Savaskan, Nicolai E. PLoS One Research Article Children and adults with the most aggressive form of brain cancer, malignant gliomas or glioblastoma, often develop cerebral edema as a life-threatening complication. This complication is routinely treated with dexamethasone (DEXA), a steroidal anti-inflammatory drug with pleiotropic action profile. Here we show that dexamethasone reduces murine and rodent glioma tumor growth in a concentration-dependent manner. Low concentrations of DEXA are already capable of inhibiting glioma cell proliferation and at higher levels induce cell death. Further, the expression of the glutamate antiporter xCT (system X(c) (−); SLC7a11) and VEGFA is up-regulated after DEXA treatment indicating early cellular stress responses. However, in human gliomas DEXA exerts differential cytotoxic effects, with some human glioma cells (U251, T98G) resistant to DEXA, a finding corroborated by clinical data of dexamethasone non-responders. Moreover, DEXA-resistant gliomas did not show any xCT alterations, indicating that these gene expressions are associated with DEXA-induced cellular stress. Hence, siRNA-mediated xCT knockdown in glioma cells increased the susceptibility to DEXA. Interestingly, cell viability of primary human astrocytes and primary rodent neurons is not affected by DEXA. We further tested the pharmacological effects of DEXA on brain tissue and showed that DEXA reduces tumor-induced disturbances of the microenvironment such as neuronal cell death and tumor-induced angiogenesis. In conclusion, we demonstrate that DEXA inhibits glioma cell growth in a concentration and species-dependent manner. Further, DEXA executes neuroprotective effects in brains and reduces tumor-induced angiogenesis. Thus, our investigations reveal that DEXA acts pleiotropically and impacts tumor growth, tumor vasculature and tumor-associated brain damage. Public Library of Science 2014-04-08 /pmc/articles/PMC3979667/ /pubmed/24714627 http://dx.doi.org/10.1371/journal.pone.0093264 Text en © 2014 Fan et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Fan, Zheng Sehm, Tina Rauh, Manfred Buchfelder, Michael Eyupoglu, Ilker Y. Savaskan, Nicolai E. Dexamethasone Alleviates Tumor-Associated Brain Damage and Angiogenesis |
title | Dexamethasone Alleviates Tumor-Associated Brain Damage and Angiogenesis |
title_full | Dexamethasone Alleviates Tumor-Associated Brain Damage and Angiogenesis |
title_fullStr | Dexamethasone Alleviates Tumor-Associated Brain Damage and Angiogenesis |
title_full_unstemmed | Dexamethasone Alleviates Tumor-Associated Brain Damage and Angiogenesis |
title_short | Dexamethasone Alleviates Tumor-Associated Brain Damage and Angiogenesis |
title_sort | dexamethasone alleviates tumor-associated brain damage and angiogenesis |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3979667/ https://www.ncbi.nlm.nih.gov/pubmed/24714627 http://dx.doi.org/10.1371/journal.pone.0093264 |
work_keys_str_mv | AT fanzheng dexamethasonealleviatestumorassociatedbraindamageandangiogenesis AT sehmtina dexamethasonealleviatestumorassociatedbraindamageandangiogenesis AT rauhmanfred dexamethasonealleviatestumorassociatedbraindamageandangiogenesis AT buchfeldermichael dexamethasonealleviatestumorassociatedbraindamageandangiogenesis AT eyupogluilkery dexamethasonealleviatestumorassociatedbraindamageandangiogenesis AT savaskannicolaie dexamethasonealleviatestumorassociatedbraindamageandangiogenesis |