Cargando…

Differential Radiosensitivity Phenotypes of DNA-PKcs Mutations Affecting NHEJ and HRR Systems following Irradiation with Gamma-Rays or Very Low Fluences of Alpha Particles

We have examined cell-cycle dependence of chromosomal aberration induction and cell killing after high or low dose-rate γ irradiation in cells bearing DNA-PKcs mutations in the S2056 cluster, the T2609 cluster, or the kinase domain. We also compared sister chromatid exchanges (SCE) production by ver...

Descripción completa

Detalles Bibliográficos
Autores principales: Lin, Yu-Fen, Nagasawa, Hatsumi, Little, John B., Kato, Takamitsu A., Shih, Hung-Ying, Xie, Xian-Jin, Wilson Jr., Paul F., Brogan, John R., Kurimasa, Akihiro, Chen, David J., Bedford, Joel S., Chen, Benjamin P. C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3979685/
https://www.ncbi.nlm.nih.gov/pubmed/24714417
http://dx.doi.org/10.1371/journal.pone.0093579
Descripción
Sumario:We have examined cell-cycle dependence of chromosomal aberration induction and cell killing after high or low dose-rate γ irradiation in cells bearing DNA-PKcs mutations in the S2056 cluster, the T2609 cluster, or the kinase domain. We also compared sister chromatid exchanges (SCE) production by very low fluences of α-particles in DNA-PKcs mutant cells, and in homologous recombination repair (HRR) mutant cells including Rad51C, Rad51D, and Fancg/xrcc9. Generally, chromosomal aberrations and cell killing by γ-rays were similarly affected by mutations in DNA-PKcs, and these mutant cells were more sensitive in G(1) than in S/G(2) phase. In G(1)-irradiated DNA-PKcs mutant cells, both chromosome- and chromatid-type breaks and exchanges were in excess than wild-type cells. For cells irradiated in late S/G(2) phase, mutant cells showed very high yields of chromatid breaks compared to wild-type cells. Few exchanges were seen in DNA-PKcs-null, Ku80-null, or DNA-PKcs kinase dead mutants, but exchanges in excess were detected in the S2506 or T2609 cluster mutants. SCE induction by very low doses of α-particles is resulted from bystander effects in cells not traversed by α-particles. SCE seen in wild-type cells was completely abolished in Rad51C- or Rad51D-deficient cells, but near normal in Fancg/xrcc9 cells. In marked contrast, very high levels of SCEs were observed in DNA-PKcs-null, DNA-PKcs kinase-dead and Ku80-null mutants. SCE induction was also abolished in T2609 cluster mutant cells, but was only slightly reduced in the S2056 cluster mutant cells. Since both non-homologous end-joining (NHEJ) and HRR systems utilize initial DNA lesions as a substrate, these results suggest the possibility of a competitive interference phenomenon operating between NHEJ and at least the Rad51C/D components of HRR; the level of interaction between damaged DNA and a particular DNA-PK component may determine the level of interaction of such DNA with a relevant HRR component.