Cargando…
The neuronal response at extended timescales: a linearized spiking input–output relation
Many biological systems are modulated by unknown slow processes. This can severely hinder analysis – especially in excitable neurons, which are highly non-linear and stochastic systems. We show the analysis simplifies considerably if the input matches the sparse “spiky” nature of the output. In this...
Autores principales: | Soudry, Daniel, Meir, Ron |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3980113/ https://www.ncbi.nlm.nih.gov/pubmed/24765073 http://dx.doi.org/10.3389/fncom.2014.00029 |
Ejemplares similares
-
The neuronal response at extended timescales: long-term correlations without long-term memory
por: Soudry, Daniel, et al.
Publicado: (2014) -
Input-output relation and energy efficiency in the neuron with different spike threshold dynamics
por: Yi, Guo-Sheng, et al.
Publicado: (2015) -
Conductance-Based Neuron Models and the Slow Dynamics of Excitability
por: Soudry, Daniel, et al.
Publicado: (2012) -
Extracting grid cell characteristics from place cell inputs using non-negative principal component analysis
por: Dordek, Yedidyah, et al.
Publicado: (2016) -
Made-to-Order Spiking Neuron Model Equipped with a Multi-Timescale Adaptive Threshold
por: Kobayashi, Ryota, et al.
Publicado: (2009)