Cargando…

A Maximal Element Theorem in FWC-Spaces and Its Applications

A maximal element theorem is proved in finite weakly convex spaces (FWC-spaces, in short) which have no linear, convex, and topological structure. Using the maximal element theorem, we develop new existence theorems of solutions to variational relation problem, generalized equilibrium problem, equil...

Descripción completa

Detalles Bibliográficos
Autores principales: Lu, Haishu, Hu, Qingwen, Miao, Yulin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3980809/
https://www.ncbi.nlm.nih.gov/pubmed/24782672
http://dx.doi.org/10.1155/2014/890696
Descripción
Sumario:A maximal element theorem is proved in finite weakly convex spaces (FWC-spaces, in short) which have no linear, convex, and topological structure. Using the maximal element theorem, we develop new existence theorems of solutions to variational relation problem, generalized equilibrium problem, equilibrium problem with lower and upper bounds, and minimax problem in FWC-spaces. The results represented in this paper unify and extend some known results in the literature.