Cargando…

Multimodal MRI-based imputation of the Aβ+ in early mild cognitive impairment

OBJECTIVE: The primary goal of this study was to identify brain atrophy from structural MRI (magnetic resonance imaging) and cerebral blood flow (CBF) patterns from arterial spin labeling perfusion MRI that are best predictors of the Aβ-burden, measured as composite (18)F-AV45-PET (positron emission...

Descripción completa

Detalles Bibliográficos
Autores principales: Tosun, Duygu, Joshi, Sarang, Weiner, Michael W, for the Alzheimer's Disease Neuroimaging Initiative
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BlackWell Publishing Ltd 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3981105/
https://www.ncbi.nlm.nih.gov/pubmed/24729983
http://dx.doi.org/10.1002/acn3.40
Descripción
Sumario:OBJECTIVE: The primary goal of this study was to identify brain atrophy from structural MRI (magnetic resonance imaging) and cerebral blood flow (CBF) patterns from arterial spin labeling perfusion MRI that are best predictors of the Aβ-burden, measured as composite (18)F-AV45-PET (positron emission tomography) uptake, in individuals with early mild cognitive impairment (MCI). Furthermore, another objective was to assess the relative importance of imaging modalities in classification of Aβ+/Aβ− early MCI. METHODS: Sixty-seven Alzheimer's Disease Neuroimaging Initiative (ADNI)-GO/2 participants with early MCI were included. Voxel-wise anatomical shape variation measures were computed by estimating the initial diffeomorphic mapping momenta from an unbiased control template. CBF measures normalized to average motor cortex CBF were mapped onto the template space. Using partial least squares regression, we identified the structural and CBF signatures of Aβ after accounting for normal cofounding effects of age, gender, and education. RESULTS: (18)F-AV45-positive early MCIs could be identified with 83% classification accuracy, 87% positive predictive value, and 84% negative predictive value by multidisciplinary classifiers combining demographics data, ApoE ε4-genotype, and a multimodal MRI-based Aβ score. INTERPRETATION: Multimodal MRI can be used to predict the amyloid status of early-MCI individuals. MRI is a very attractive candidate for the identification of inexpensive and noninvasive surrogate biomarkers of Aβ deposition. Our approach is expected to have value for the identification of individuals likely to be Aβ+ in circumstances where cost or logistical problems prevent Aβ detection using cerebrospinal fluid analysis or Aβ-PET. This can also be used in clinical settings and clinical trials, aiding subject recruitment and evaluation of treatment efficacy. Imputation of the Aβ-positivity status could also complement Aβ-PET by identifying individuals who would benefit the most from this assessment.