Cargando…

Bifurcations of Orbit and Inclination Flips Heteroclinic Loop with Nonhyperbolic Equilibria

The bifurcations of heteroclinic loop with one nonhyperbolic equilibrium and one hyperbolic saddle are considered, where the nonhyperbolic equilibrium is supposed to undergo a transcritical bifurcation; moreover, the heteroclinic loop has an orbit flip and an inclination flip. When the nonhyperbolic...

Descripción completa

Detalles Bibliográficos
Autores principales: Geng, Fengjie, Zhao, Junfang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3981562/
https://www.ncbi.nlm.nih.gov/pubmed/24987740
http://dx.doi.org/10.1155/2014/585609
_version_ 1782311063896719360
author Geng, Fengjie
Zhao, Junfang
author_facet Geng, Fengjie
Zhao, Junfang
author_sort Geng, Fengjie
collection PubMed
description The bifurcations of heteroclinic loop with one nonhyperbolic equilibrium and one hyperbolic saddle are considered, where the nonhyperbolic equilibrium is supposed to undergo a transcritical bifurcation; moreover, the heteroclinic loop has an orbit flip and an inclination flip. When the nonhyperbolic equilibrium does not undergo a transcritical bifurcation, we establish the coexistence and noncoexistence of the periodic orbits and homoclinic orbits. While the nonhyperbolic equilibrium undergoes the transcritical bifurcation, we obtain the noncoexistence of the periodic orbits and homoclinic orbits and the existence of two or three heteroclinic orbits.
format Online
Article
Text
id pubmed-3981562
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Hindawi Publishing Corporation
record_format MEDLINE/PubMed
spelling pubmed-39815622014-07-01 Bifurcations of Orbit and Inclination Flips Heteroclinic Loop with Nonhyperbolic Equilibria Geng, Fengjie Zhao, Junfang ScientificWorldJournal Research Article The bifurcations of heteroclinic loop with one nonhyperbolic equilibrium and one hyperbolic saddle are considered, where the nonhyperbolic equilibrium is supposed to undergo a transcritical bifurcation; moreover, the heteroclinic loop has an orbit flip and an inclination flip. When the nonhyperbolic equilibrium does not undergo a transcritical bifurcation, we establish the coexistence and noncoexistence of the periodic orbits and homoclinic orbits. While the nonhyperbolic equilibrium undergoes the transcritical bifurcation, we obtain the noncoexistence of the periodic orbits and homoclinic orbits and the existence of two or three heteroclinic orbits. Hindawi Publishing Corporation 2014 2014-03-23 /pmc/articles/PMC3981562/ /pubmed/24987740 http://dx.doi.org/10.1155/2014/585609 Text en Copyright © 2014 F. Geng and J. Zhao. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Geng, Fengjie
Zhao, Junfang
Bifurcations of Orbit and Inclination Flips Heteroclinic Loop with Nonhyperbolic Equilibria
title Bifurcations of Orbit and Inclination Flips Heteroclinic Loop with Nonhyperbolic Equilibria
title_full Bifurcations of Orbit and Inclination Flips Heteroclinic Loop with Nonhyperbolic Equilibria
title_fullStr Bifurcations of Orbit and Inclination Flips Heteroclinic Loop with Nonhyperbolic Equilibria
title_full_unstemmed Bifurcations of Orbit and Inclination Flips Heteroclinic Loop with Nonhyperbolic Equilibria
title_short Bifurcations of Orbit and Inclination Flips Heteroclinic Loop with Nonhyperbolic Equilibria
title_sort bifurcations of orbit and inclination flips heteroclinic loop with nonhyperbolic equilibria
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3981562/
https://www.ncbi.nlm.nih.gov/pubmed/24987740
http://dx.doi.org/10.1155/2014/585609
work_keys_str_mv AT gengfengjie bifurcationsoforbitandinclinationflipsheteroclinicloopwithnonhyperbolicequilibria
AT zhaojunfang bifurcationsoforbitandinclinationflipsheteroclinicloopwithnonhyperbolicequilibria