Cargando…

Phylogeny of Campanuloideae (Campanulaceae) with Emphasis on the Utility of Nuclear Pentatricopeptide Repeat (PPR) Genes

BACKGROUND: The Campanuloideae (Campanulaceae) are a highly diverse clade of angiosperms found mostly in the Northern Hemisphere, with the highest diversity in temperate areas of the Old World. Chloroplast markers have greatly improved our understanding of this clade but many relationships remain un...

Descripción completa

Detalles Bibliográficos
Autores principales: Crowl, Andrew A., Mavrodiev, Evgeny, Mansion, Guilhem, Haberle, Rosemarie, Pistarino, Annalaura, Kamari, Georgia, Phitos, Dimitrios, Borsch, Thomas, Cellinese, Nico
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3981779/
https://www.ncbi.nlm.nih.gov/pubmed/24718519
http://dx.doi.org/10.1371/journal.pone.0094199
Descripción
Sumario:BACKGROUND: The Campanuloideae (Campanulaceae) are a highly diverse clade of angiosperms found mostly in the Northern Hemisphere, with the highest diversity in temperate areas of the Old World. Chloroplast markers have greatly improved our understanding of this clade but many relationships remain unclear primarily due to low levels of molecular evolution and recent and rapid divergence. Furthermore, focusing solely on maternally inherited markers such as those from the chloroplast genome may obscure processes such as hybridization. In this study we explore the phylogenetic utility of two low-copy nuclear loci from the pentatricopeptide repeat gene family (PPR). Rapidly evolving nuclear loci may provide increased phylogenetic resolution in clades containing recently diverged or closely related taxa. We present results based on both chloroplast and low-copy nuclear loci and discuss the utility of such markers to resolve evolutionary relationships and infer hybridization events within the Campanuloideae clade. RESULTS: The inclusion of low-copy nuclear genes into the analyses provides increased phylogenetic resolution in two species-rich clades containing recently diverged taxa. We also obtain support for the placement of two early diverging lineages (Jasione and Musschia-Gadellia clades) that have previously been unresolved. Furthermore, phylogenetic analyses of PPR loci revealed potential hybridization events for a number of taxa (e.g., Campanula pelviformis and Legousia species). These loci offer greater overall topological support than obtained with plastid DNA alone. CONCLUSION: This study represents the first inclusion of low-copy nuclear genes for phylogenetic reconstruction in Campanuloideae. The two PPR loci were easy to sequence, required no cloning, and the sequence alignments were straightforward across the entire Campanuloideae clade. Although potentially complicated by incomplete lineage sorting, these markers proved useful for understanding the processes of reticulate evolution and resolving relationships at a wide range of phylogenetic levels. Our results stress the importance of including multiple, independent loci in phylogenetic analyses.