Cargando…

Label-free in vivo imaging of myelinated axons in health and disease with spectral confocal reflectance microscopy

We report a new technique for high-resolution in vivo imaging of myelinated axons in the brain, spinal cord and peripheral nerve that requires no fluorescent labeling. This method, based on spectral confocal reflectance microscopy (SCoRe), uses a conventional laser scanning confocal system to genera...

Descripción completa

Detalles Bibliográficos
Autores principales: Schain, Aaron J., Hill, Robert A., Grutzendler, Jaime
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3981936/
https://www.ncbi.nlm.nih.gov/pubmed/24681598
http://dx.doi.org/10.1038/nm.3495
Descripción
Sumario:We report a new technique for high-resolution in vivo imaging of myelinated axons in the brain, spinal cord and peripheral nerve that requires no fluorescent labeling. This method, based on spectral confocal reflectance microscopy (SCoRe), uses a conventional laser scanning confocal system to generate images by merging the simultaneously reflected signals from multiple lasers of different wavelengths. Striking color patterns unique to individual myelinated fibers are generated that facilitate their tracing in dense axonal areas. These patterns highlight nodes of Ranvier and Schmidt-Lanterman incisures and can be used to detect various myelin pathologies. Using SCoRe we performed chronic brain imaging up to 400 μm deep, capturing for the first time de novo myelination of mouse cortical axons in vivo. We also established the feasibility of imaging myelinated axons in the human cerebral cortex. SCoRe adds a powerful component to the evolving toolbox for imaging myelination in living animals and potentially in humans.