Cargando…
Plasma membrane partitioning: from macro-domains to new views on plasmodesmata
Compartmentalization of cellular functions relies on partitioning of domains of diverse sizes within the plasma membrane (PM). Macro-domains measure several micrometers and contain specific proteins concentrated to specific sides (apical, basal, and lateral) of the PM conferring a polarity to the ce...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3982076/ https://www.ncbi.nlm.nih.gov/pubmed/24772114 http://dx.doi.org/10.3389/fpls.2014.00128 |
Sumario: | Compartmentalization of cellular functions relies on partitioning of domains of diverse sizes within the plasma membrane (PM). Macro-domains measure several micrometers and contain specific proteins concentrated to specific sides (apical, basal, and lateral) of the PM conferring a polarity to the cell. Cell polarity is one of the driving forces in tissue and growth patterning. To maintain macro-domains within the PM, eukaryotic cells exert diverse mechanisms to counteract the free lateral diffusion of proteins. Protein activation/inactivation, endocytosis, PM recycling of transmembrane proteins and the role of diffusion barriers in macro-domains partitioning at PM will be discussed. Moreover, as plasmodesmata (PDs) are domains inserted within the PM which also mediate tissue and growth patterning, it is essential to understand how segregation of specific set of proteins is maintained at PDs while PDs domains are smaller in size compared to macro-domains. Here, we will present mechanisms allowing restriction of proteins at PM macro-domains, but for which molecular components have been found in PDs proteome. We will explore the hypothesis that partitioning of macro-domains and PDs may be ruled by similar mechanisms. |
---|