Cargando…
New Fuzzy Support Vector Machine for the Class Imbalance Problem in Medical Datasets Classification
In medical datasets classification, support vector machine (SVM) is considered to be one of the most successful methods. However, most of the real-world medical datasets usually contain some outliers/noise and data often have class imbalance problems. In this paper, a fuzzy support machine (FSVM) fo...
Autores principales: | Gu, Xiaoqing, Ni, Tongguang, Wang, Hongyuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3982259/ https://www.ncbi.nlm.nih.gov/pubmed/24790571 http://dx.doi.org/10.1155/2014/536434 |
Ejemplares similares
-
Patient classification as an outlier detection problem: An application of the One-Class Support Vector Machine
por: Mourão-Miranda, Janaina, et al.
Publicado: (2011) -
Deep Learning-Based Imbalanced Classification With Fuzzy Support Vector Machine
por: Wang, Ke-Fan, et al.
Publicado: (2022) -
Fuzzy support vector machine: an efficient rule-based classification technique for microarrays
por: Hajiloo, Mohsen, et al.
Publicado: (2013) -
Handling class imbalance problem in miRNA dataset associated with cancer
por: Kothandan, Ram
Publicado: (2015) -
Support Vector Machines for Classification Problems in High Energy Physics
por: Feindt, M, et al.
Publicado: (1999)