Cargando…
GBE50 Attenuates Inflammatory Response by Inhibiting the p38 MAPK and NF-κB Pathways in LPS-Stimulated Microglial Cells
Overactivated microglia contribute to a variety of pathological conditions in the central nervous system. The major goal of the present study is to evaluate the potential suppressing effects of a new type of Ginko biloba extract, GBE50, on activated microglia which causes proinflammatory responses a...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3982279/ https://www.ncbi.nlm.nih.gov/pubmed/24782908 http://dx.doi.org/10.1155/2014/368598 |
_version_ | 1782311163373027328 |
---|---|
author | He, Gai-ying Yuan, Chong-gang Hao, Li Xu, Ying Zhang, Zhi-xiong |
author_facet | He, Gai-ying Yuan, Chong-gang Hao, Li Xu, Ying Zhang, Zhi-xiong |
author_sort | He, Gai-ying |
collection | PubMed |
description | Overactivated microglia contribute to a variety of pathological conditions in the central nervous system. The major goal of the present study is to evaluate the potential suppressing effects of a new type of Ginko biloba extract, GBE50, on activated microglia which causes proinflammatory responses and to explore the underlying molecular mechanisms. Murine BV2 microglia cells, with or without pretreatmentof GBE50 at various concentrations, were activated by incubation with lipopolysaccharide (LPS). A series of biochemical and microscopic assays were performed to measure cell viability, cell morphology, release of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), and signal transduction via the p38 MAPK and nuclear factor-kappa B (NF-κB) p65 pathways. We found that GBE50 pretreatment suppressed LPS-induced morphological changes in BV2 cells. Moreover, GBE50 treatment significantly reduced the release of proinflammatory cytokines, TNF-α and IL-1β, and inhibited the associated signal transduction through the p38 MAPK and NF-κB p65 pathways. These results demonstrated the anti-inflammatory effect of GBE50 on LPS-activated BV2 microglia cells, and indicated that GBE50 reduced the LPS-induced proinflammatory TNF-α and IL-1β release by inhibiting signal transduction through the NF-κB p65 and p38 MAPK pathways. Our findings reveal, at least in part, the molecular basis underlying the anti-inflammatory effects of GBE50. |
format | Online Article Text |
id | pubmed-3982279 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-39822792014-04-29 GBE50 Attenuates Inflammatory Response by Inhibiting the p38 MAPK and NF-κB Pathways in LPS-Stimulated Microglial Cells He, Gai-ying Yuan, Chong-gang Hao, Li Xu, Ying Zhang, Zhi-xiong Evid Based Complement Alternat Med Research Article Overactivated microglia contribute to a variety of pathological conditions in the central nervous system. The major goal of the present study is to evaluate the potential suppressing effects of a new type of Ginko biloba extract, GBE50, on activated microglia which causes proinflammatory responses and to explore the underlying molecular mechanisms. Murine BV2 microglia cells, with or without pretreatmentof GBE50 at various concentrations, were activated by incubation with lipopolysaccharide (LPS). A series of biochemical and microscopic assays were performed to measure cell viability, cell morphology, release of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), and signal transduction via the p38 MAPK and nuclear factor-kappa B (NF-κB) p65 pathways. We found that GBE50 pretreatment suppressed LPS-induced morphological changes in BV2 cells. Moreover, GBE50 treatment significantly reduced the release of proinflammatory cytokines, TNF-α and IL-1β, and inhibited the associated signal transduction through the p38 MAPK and NF-κB p65 pathways. These results demonstrated the anti-inflammatory effect of GBE50 on LPS-activated BV2 microglia cells, and indicated that GBE50 reduced the LPS-induced proinflammatory TNF-α and IL-1β release by inhibiting signal transduction through the NF-κB p65 and p38 MAPK pathways. Our findings reveal, at least in part, the molecular basis underlying the anti-inflammatory effects of GBE50. Hindawi Publishing Corporation 2014 2014-03-24 /pmc/articles/PMC3982279/ /pubmed/24782908 http://dx.doi.org/10.1155/2014/368598 Text en Copyright © 2014 Gai-ying He et al. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article He, Gai-ying Yuan, Chong-gang Hao, Li Xu, Ying Zhang, Zhi-xiong GBE50 Attenuates Inflammatory Response by Inhibiting the p38 MAPK and NF-κB Pathways in LPS-Stimulated Microglial Cells |
title | GBE50 Attenuates Inflammatory Response by Inhibiting the p38 MAPK and NF-κB Pathways in LPS-Stimulated Microglial Cells |
title_full | GBE50 Attenuates Inflammatory Response by Inhibiting the p38 MAPK and NF-κB Pathways in LPS-Stimulated Microglial Cells |
title_fullStr | GBE50 Attenuates Inflammatory Response by Inhibiting the p38 MAPK and NF-κB Pathways in LPS-Stimulated Microglial Cells |
title_full_unstemmed | GBE50 Attenuates Inflammatory Response by Inhibiting the p38 MAPK and NF-κB Pathways in LPS-Stimulated Microglial Cells |
title_short | GBE50 Attenuates Inflammatory Response by Inhibiting the p38 MAPK and NF-κB Pathways in LPS-Stimulated Microglial Cells |
title_sort | gbe50 attenuates inflammatory response by inhibiting the p38 mapk and nf-κb pathways in lps-stimulated microglial cells |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3982279/ https://www.ncbi.nlm.nih.gov/pubmed/24782908 http://dx.doi.org/10.1155/2014/368598 |
work_keys_str_mv | AT hegaiying gbe50attenuatesinflammatoryresponsebyinhibitingthep38mapkandnfkbpathwaysinlpsstimulatedmicroglialcells AT yuanchonggang gbe50attenuatesinflammatoryresponsebyinhibitingthep38mapkandnfkbpathwaysinlpsstimulatedmicroglialcells AT haoli gbe50attenuatesinflammatoryresponsebyinhibitingthep38mapkandnfkbpathwaysinlpsstimulatedmicroglialcells AT xuying gbe50attenuatesinflammatoryresponsebyinhibitingthep38mapkandnfkbpathwaysinlpsstimulatedmicroglialcells AT zhangzhixiong gbe50attenuatesinflammatoryresponsebyinhibitingthep38mapkandnfkbpathwaysinlpsstimulatedmicroglialcells |