Cargando…
An Interaction between Glutathione and the Capsid Is Required for the Morphogenesis of C-Cluster Enteroviruses
Glutathione (GSH) is the most abundant cellular thiol playing an essential role in preserving a reduced cellular environment. Cellular GSH levels can be efficiently reduced by the GSH biosynthesis inhibitor, L-buthionine sulfoximine (BSO). The aim of our study was to determine the role of GSH in the...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3983063/ https://www.ncbi.nlm.nih.gov/pubmed/24722315 http://dx.doi.org/10.1371/journal.ppat.1004052 |
_version_ | 1782311252540784640 |
---|---|
author | Ma, Hsin-Chieh Liu, Ying Wang, Chunling Strauss, Michael Rehage, Nina Chen, Ying-Han Altan-Bonnet, Nihal Hogle, James Wimmer, Eckard Mueller, Steffen Paul, Aniko V. Jiang, Ping |
author_facet | Ma, Hsin-Chieh Liu, Ying Wang, Chunling Strauss, Michael Rehage, Nina Chen, Ying-Han Altan-Bonnet, Nihal Hogle, James Wimmer, Eckard Mueller, Steffen Paul, Aniko V. Jiang, Ping |
author_sort | Ma, Hsin-Chieh |
collection | PubMed |
description | Glutathione (GSH) is the most abundant cellular thiol playing an essential role in preserving a reduced cellular environment. Cellular GSH levels can be efficiently reduced by the GSH biosynthesis inhibitor, L-buthionine sulfoximine (BSO). The aim of our study was to determine the role of GSH in the growth of two C-cluster enteroviruses, poliovirus type 1 (PV1) and coxsackievirus A20 (CAV20). Our results show that the growth of both PV1 and CAV20 is strongly inhibited by BSO and can be partially reversed by the addition of GSH. BSO has no effect on viral protein synthesis or RNA replication but it strikingly reduces the accumulation of 14S pentamers in infected cells. GSH-pull down assays show that GSH directly interacts with capsid precursors and mature virus made in the absence of BSO whereas capsid precursors produced under GSH-depletion do not bind to GSH. In particular, the loss of binding of GSH may debilitate the stability of 14S pentamers, resulting in their failure to assemble into mature virus. Immunofluorescence cell imaging demonstrated that GSH-depletion did not affect the localization of viral capsid proteins to the replication complex. PV1 BSO resistant (BSOr) mutants evolved readily during passaging of the virus in the presence of BSO. Structural analyses revealed that the BSOr mutations, mapping to VP1 and VP3 capsid proteins, are primarily located at protomer/protomer interfaces. BSOr mutations might, in place of GSH, aid the stability of 14S particles that is required for virion maturation. Our observation that BSOr mutants are more heat resistant and need less GSH than wt virus to be protected from heat inactivation suggests that they possess a more stable capsid. We propose that the role of GSH during enterovirus morphogenesis is to stabilize capsid structures by direct interaction with capsid proteins both during and after the formation of mature virus particles. |
format | Online Article Text |
id | pubmed-3983063 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-39830632014-04-15 An Interaction between Glutathione and the Capsid Is Required for the Morphogenesis of C-Cluster Enteroviruses Ma, Hsin-Chieh Liu, Ying Wang, Chunling Strauss, Michael Rehage, Nina Chen, Ying-Han Altan-Bonnet, Nihal Hogle, James Wimmer, Eckard Mueller, Steffen Paul, Aniko V. Jiang, Ping PLoS Pathog Research Article Glutathione (GSH) is the most abundant cellular thiol playing an essential role in preserving a reduced cellular environment. Cellular GSH levels can be efficiently reduced by the GSH biosynthesis inhibitor, L-buthionine sulfoximine (BSO). The aim of our study was to determine the role of GSH in the growth of two C-cluster enteroviruses, poliovirus type 1 (PV1) and coxsackievirus A20 (CAV20). Our results show that the growth of both PV1 and CAV20 is strongly inhibited by BSO and can be partially reversed by the addition of GSH. BSO has no effect on viral protein synthesis or RNA replication but it strikingly reduces the accumulation of 14S pentamers in infected cells. GSH-pull down assays show that GSH directly interacts with capsid precursors and mature virus made in the absence of BSO whereas capsid precursors produced under GSH-depletion do not bind to GSH. In particular, the loss of binding of GSH may debilitate the stability of 14S pentamers, resulting in their failure to assemble into mature virus. Immunofluorescence cell imaging demonstrated that GSH-depletion did not affect the localization of viral capsid proteins to the replication complex. PV1 BSO resistant (BSOr) mutants evolved readily during passaging of the virus in the presence of BSO. Structural analyses revealed that the BSOr mutations, mapping to VP1 and VP3 capsid proteins, are primarily located at protomer/protomer interfaces. BSOr mutations might, in place of GSH, aid the stability of 14S particles that is required for virion maturation. Our observation that BSOr mutants are more heat resistant and need less GSH than wt virus to be protected from heat inactivation suggests that they possess a more stable capsid. We propose that the role of GSH during enterovirus morphogenesis is to stabilize capsid structures by direct interaction with capsid proteins both during and after the formation of mature virus particles. Public Library of Science 2014-04-10 /pmc/articles/PMC3983063/ /pubmed/24722315 http://dx.doi.org/10.1371/journal.ppat.1004052 Text en © 2014 Ma et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Ma, Hsin-Chieh Liu, Ying Wang, Chunling Strauss, Michael Rehage, Nina Chen, Ying-Han Altan-Bonnet, Nihal Hogle, James Wimmer, Eckard Mueller, Steffen Paul, Aniko V. Jiang, Ping An Interaction between Glutathione and the Capsid Is Required for the Morphogenesis of C-Cluster Enteroviruses |
title | An Interaction between Glutathione and the Capsid Is Required for the Morphogenesis of C-Cluster Enteroviruses |
title_full | An Interaction between Glutathione and the Capsid Is Required for the Morphogenesis of C-Cluster Enteroviruses |
title_fullStr | An Interaction between Glutathione and the Capsid Is Required for the Morphogenesis of C-Cluster Enteroviruses |
title_full_unstemmed | An Interaction between Glutathione and the Capsid Is Required for the Morphogenesis of C-Cluster Enteroviruses |
title_short | An Interaction between Glutathione and the Capsid Is Required for the Morphogenesis of C-Cluster Enteroviruses |
title_sort | interaction between glutathione and the capsid is required for the morphogenesis of c-cluster enteroviruses |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3983063/ https://www.ncbi.nlm.nih.gov/pubmed/24722315 http://dx.doi.org/10.1371/journal.ppat.1004052 |
work_keys_str_mv | AT mahsinchieh aninteractionbetweenglutathioneandthecapsidisrequiredforthemorphogenesisofcclusterenteroviruses AT liuying aninteractionbetweenglutathioneandthecapsidisrequiredforthemorphogenesisofcclusterenteroviruses AT wangchunling aninteractionbetweenglutathioneandthecapsidisrequiredforthemorphogenesisofcclusterenteroviruses AT straussmichael aninteractionbetweenglutathioneandthecapsidisrequiredforthemorphogenesisofcclusterenteroviruses AT rehagenina aninteractionbetweenglutathioneandthecapsidisrequiredforthemorphogenesisofcclusterenteroviruses AT chenyinghan aninteractionbetweenglutathioneandthecapsidisrequiredforthemorphogenesisofcclusterenteroviruses AT altanbonnetnihal aninteractionbetweenglutathioneandthecapsidisrequiredforthemorphogenesisofcclusterenteroviruses AT hoglejames aninteractionbetweenglutathioneandthecapsidisrequiredforthemorphogenesisofcclusterenteroviruses AT wimmereckard aninteractionbetweenglutathioneandthecapsidisrequiredforthemorphogenesisofcclusterenteroviruses AT muellersteffen aninteractionbetweenglutathioneandthecapsidisrequiredforthemorphogenesisofcclusterenteroviruses AT paulanikov aninteractionbetweenglutathioneandthecapsidisrequiredforthemorphogenesisofcclusterenteroviruses AT jiangping aninteractionbetweenglutathioneandthecapsidisrequiredforthemorphogenesisofcclusterenteroviruses AT mahsinchieh interactionbetweenglutathioneandthecapsidisrequiredforthemorphogenesisofcclusterenteroviruses AT liuying interactionbetweenglutathioneandthecapsidisrequiredforthemorphogenesisofcclusterenteroviruses AT wangchunling interactionbetweenglutathioneandthecapsidisrequiredforthemorphogenesisofcclusterenteroviruses AT straussmichael interactionbetweenglutathioneandthecapsidisrequiredforthemorphogenesisofcclusterenteroviruses AT rehagenina interactionbetweenglutathioneandthecapsidisrequiredforthemorphogenesisofcclusterenteroviruses AT chenyinghan interactionbetweenglutathioneandthecapsidisrequiredforthemorphogenesisofcclusterenteroviruses AT altanbonnetnihal interactionbetweenglutathioneandthecapsidisrequiredforthemorphogenesisofcclusterenteroviruses AT hoglejames interactionbetweenglutathioneandthecapsidisrequiredforthemorphogenesisofcclusterenteroviruses AT wimmereckard interactionbetweenglutathioneandthecapsidisrequiredforthemorphogenesisofcclusterenteroviruses AT muellersteffen interactionbetweenglutathioneandthecapsidisrequiredforthemorphogenesisofcclusterenteroviruses AT paulanikov interactionbetweenglutathioneandthecapsidisrequiredforthemorphogenesisofcclusterenteroviruses AT jiangping interactionbetweenglutathioneandthecapsidisrequiredforthemorphogenesisofcclusterenteroviruses |