Cargando…
An LUR/BME Framework to Estimate PM(2.5) Explained by on Road Mobile and Stationary Sources
[Image: see text] Knowledge of particulate matter concentrations <2.5 μm in diameter (PM(2.5)) across the United States is limited due to sparse monitoring across space and time. Epidemiological studies need accurate exposure estimates in order to properly investigate potential morbidity and mort...
Autores principales: | Reyes, Jeanette M., Serre, Marc L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American
Chemical Society
2014
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3983125/ https://www.ncbi.nlm.nih.gov/pubmed/24387222 http://dx.doi.org/10.1021/es4040528 |
Ejemplares similares
-
Performance comparison of LUR and OK in PM(2.5) concentration mapping: a multidimensional perspective
por: Zou, Bin, et al.
Publicado: (2015) -
Spatio-Temporal Characteristics of PM(2.5) Concentrations in China Based on Multiple Sources of Data and LUR-GBM during 2016–2021
por: Dai, Hongbin, et al.
Publicado: (2022) -
BME Estimation of Residential Exposure to Ambient PM(10) and Ozone at Multiple Time Scales
por: Yu, Hwa-Lung, et al.
Publicado: (2009) -
Spatiotemporal Modeling of Ozone Levels in Quebec (Canada): A Comparison of Kriging, Land-Use Regression (LUR), and Combined Bayesian Maximum Entropy–LUR Approaches
por: Adam-Poupart, Ariane, et al.
Publicado: (2014) -
Three-Dimensional Landscape Pattern Characteristics of Land Function Zones and Their Influence on PM(2.5) Based on LUR Model in the Central Urban Area of Nanchang City, China
por: Chen, Wenbo, et al.
Publicado: (2022)