Cargando…
Toroidal-Spiral Particles for Codelivery of Anti-VEGFR-2 Antibody and Irinotecan: A Potential Implant to Hinder Recurrence of Glioblastoma Multiforme
[Image: see text] Heterogeneous toroidal-spiral particles (TSPs) were generated by polymer droplet sedimentation, interaction, and cross-linking. TSPs provide a platform for encapsulation and release of multiple compounds of different sizes and physicochemical properties. As a model system, we demon...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2014
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3983134/ https://www.ncbi.nlm.nih.gov/pubmed/24460101 http://dx.doi.org/10.1021/bm401550r |
_version_ | 1782311268840898560 |
---|---|
author | Sharma, Vishal Köllmer, Melanie Szymusiak, Magdalena Nitsche, Ludwig C. Gemeinhart, Richard A. Liu, Ying |
author_facet | Sharma, Vishal Köllmer, Melanie Szymusiak, Magdalena Nitsche, Ludwig C. Gemeinhart, Richard A. Liu, Ying |
author_sort | Sharma, Vishal |
collection | PubMed |
description | [Image: see text] Heterogeneous toroidal-spiral particles (TSPs) were generated by polymer droplet sedimentation, interaction, and cross-linking. TSPs provide a platform for encapsulation and release of multiple compounds of different sizes and physicochemical properties. As a model system, we demonstrate the encapsulation and independently controlled release of an anti-VEGFR-2 antibody and irinotecan for the treatment of glioblastoma multiforme. The anti-VEGFR-2 antibody was released from the TS channels and its binding to HUVECs was confirmed by confocal microscopy and flow cytometry, suggesting active antibody encapsulation and release. Irinotecan, a small molecule drug, was released from the dense polymer matrix of poly(ethylene glycol) diacrylate (MW ∼ 700 g/mol; PEGDA 700). Released irinotecan inhibited the proliferation of U251 malignant glioma cells. Since the therapeutic compounds are released through different pathways, specifically diffusion through the polymer matrix versus TS channels, the release rate can be controlled independently through the design of the structure and material of particle components. |
format | Online Article Text |
id | pubmed-3983134 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | American Chemical
Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-39831342015-01-26 Toroidal-Spiral Particles for Codelivery of Anti-VEGFR-2 Antibody and Irinotecan: A Potential Implant to Hinder Recurrence of Glioblastoma Multiforme Sharma, Vishal Köllmer, Melanie Szymusiak, Magdalena Nitsche, Ludwig C. Gemeinhart, Richard A. Liu, Ying Biomacromolecules [Image: see text] Heterogeneous toroidal-spiral particles (TSPs) were generated by polymer droplet sedimentation, interaction, and cross-linking. TSPs provide a platform for encapsulation and release of multiple compounds of different sizes and physicochemical properties. As a model system, we demonstrate the encapsulation and independently controlled release of an anti-VEGFR-2 antibody and irinotecan for the treatment of glioblastoma multiforme. The anti-VEGFR-2 antibody was released from the TS channels and its binding to HUVECs was confirmed by confocal microscopy and flow cytometry, suggesting active antibody encapsulation and release. Irinotecan, a small molecule drug, was released from the dense polymer matrix of poly(ethylene glycol) diacrylate (MW ∼ 700 g/mol; PEGDA 700). Released irinotecan inhibited the proliferation of U251 malignant glioma cells. Since the therapeutic compounds are released through different pathways, specifically diffusion through the polymer matrix versus TS channels, the release rate can be controlled independently through the design of the structure and material of particle components. American Chemical Society 2014-01-26 2014-03-10 /pmc/articles/PMC3983134/ /pubmed/24460101 http://dx.doi.org/10.1021/bm401550r Text en Copyright © 2014 American Chemical Society |
spellingShingle | Sharma, Vishal Köllmer, Melanie Szymusiak, Magdalena Nitsche, Ludwig C. Gemeinhart, Richard A. Liu, Ying Toroidal-Spiral Particles for Codelivery of Anti-VEGFR-2 Antibody and Irinotecan: A Potential Implant to Hinder Recurrence of Glioblastoma Multiforme |
title | Toroidal-Spiral Particles for Codelivery of Anti-VEGFR-2
Antibody and Irinotecan: A Potential Implant to Hinder Recurrence
of Glioblastoma Multiforme |
title_full | Toroidal-Spiral Particles for Codelivery of Anti-VEGFR-2
Antibody and Irinotecan: A Potential Implant to Hinder Recurrence
of Glioblastoma Multiforme |
title_fullStr | Toroidal-Spiral Particles for Codelivery of Anti-VEGFR-2
Antibody and Irinotecan: A Potential Implant to Hinder Recurrence
of Glioblastoma Multiforme |
title_full_unstemmed | Toroidal-Spiral Particles for Codelivery of Anti-VEGFR-2
Antibody and Irinotecan: A Potential Implant to Hinder Recurrence
of Glioblastoma Multiforme |
title_short | Toroidal-Spiral Particles for Codelivery of Anti-VEGFR-2
Antibody and Irinotecan: A Potential Implant to Hinder Recurrence
of Glioblastoma Multiforme |
title_sort | toroidal-spiral particles for codelivery of anti-vegfr-2
antibody and irinotecan: a potential implant to hinder recurrence
of glioblastoma multiforme |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3983134/ https://www.ncbi.nlm.nih.gov/pubmed/24460101 http://dx.doi.org/10.1021/bm401550r |
work_keys_str_mv | AT sharmavishal toroidalspiralparticlesforcodeliveryofantivegfr2antibodyandirinotecanapotentialimplanttohinderrecurrenceofglioblastomamultiforme AT kollmermelanie toroidalspiralparticlesforcodeliveryofantivegfr2antibodyandirinotecanapotentialimplanttohinderrecurrenceofglioblastomamultiforme AT szymusiakmagdalena toroidalspiralparticlesforcodeliveryofantivegfr2antibodyandirinotecanapotentialimplanttohinderrecurrenceofglioblastomamultiforme AT nitscheludwigc toroidalspiralparticlesforcodeliveryofantivegfr2antibodyandirinotecanapotentialimplanttohinderrecurrenceofglioblastomamultiforme AT gemeinhartricharda toroidalspiralparticlesforcodeliveryofantivegfr2antibodyandirinotecanapotentialimplanttohinderrecurrenceofglioblastomamultiforme AT liuying toroidalspiralparticlesforcodeliveryofantivegfr2antibodyandirinotecanapotentialimplanttohinderrecurrenceofglioblastomamultiforme |