Cargando…

Induction of Lung Cancer Cell Apoptosis through a p53 Pathway by [6]-Shogaol and Its Cysteine-Conjugated Metabolite M2

[Image: see text] Dietary chemoprevention of cancer offers the possibility to suppress or inhibit cancer growth before it develops into more advanced and lethal stages. To this end, identification of novel compounds and their mechanisms of action is constantly needed. In this study, we describe that...

Descripción completa

Detalles Bibliográficos
Autores principales: Warin, Renaud F., Chen, Huadong, Soroka, Dominique N., Zhu, Yingdong, Sang, Shengmin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2014
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3983336/
https://www.ncbi.nlm.nih.gov/pubmed/24446736
http://dx.doi.org/10.1021/jf405573e
_version_ 1782311308284133376
author Warin, Renaud F.
Chen, Huadong
Soroka, Dominique N.
Zhu, Yingdong
Sang, Shengmin
author_facet Warin, Renaud F.
Chen, Huadong
Soroka, Dominique N.
Zhu, Yingdong
Sang, Shengmin
author_sort Warin, Renaud F.
collection PubMed
description [Image: see text] Dietary chemoprevention of cancer offers the possibility to suppress or inhibit cancer growth before it develops into more advanced and lethal stages. To this end, identification of novel compounds and their mechanisms of action is constantly needed. In this study, we describe that a major component of dry ginger (Zingiber officinalis), [6]-shogaol (6S), can be quickly metabolized in A549 human lung cancer cell line. One of the resulting metabolites, the cysteine-conjugated 6S (M2), exhibits toxicity to cancer cells similar to the parent compound 6S, but is relatively less toxic toward normal cells than 6S. We further demonstrate that both compounds can cause cancer cell death by activating the mitochondrial apoptotic pathway. Our results show that the cancer cell toxicity is initiated by early modulation of glutathione (GSH) intracellular content. The subsequently generated oxidative stress activates a p53 pathway that ultimately leads to the release of mitochondria-associated apoptotic molecules such as cytochrome C, and cleaved caspases 3 and 9. In a xenograft nude mouse model, a dose of 30 mg/kg of 6S or M2 was able to significantly decrease tumor burden, without any associated toxicity to the animals. This effect was correlated with an induction of apoptosis and reduction of cell proliferation in the tumor tissues. Taken together, our results show that 6S metabolism is an integral part of its anticancer activities in vitro and in vivo. This allows us to characterize M2 as a novel compound with superior in vivo chemopreventive properties that targets similar anticancer mechanisms as 6S.
format Online
Article
Text
id pubmed-3983336
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-39833362015-01-21 Induction of Lung Cancer Cell Apoptosis through a p53 Pathway by [6]-Shogaol and Its Cysteine-Conjugated Metabolite M2 Warin, Renaud F. Chen, Huadong Soroka, Dominique N. Zhu, Yingdong Sang, Shengmin J Agric Food Chem [Image: see text] Dietary chemoprevention of cancer offers the possibility to suppress or inhibit cancer growth before it develops into more advanced and lethal stages. To this end, identification of novel compounds and their mechanisms of action is constantly needed. In this study, we describe that a major component of dry ginger (Zingiber officinalis), [6]-shogaol (6S), can be quickly metabolized in A549 human lung cancer cell line. One of the resulting metabolites, the cysteine-conjugated 6S (M2), exhibits toxicity to cancer cells similar to the parent compound 6S, but is relatively less toxic toward normal cells than 6S. We further demonstrate that both compounds can cause cancer cell death by activating the mitochondrial apoptotic pathway. Our results show that the cancer cell toxicity is initiated by early modulation of glutathione (GSH) intracellular content. The subsequently generated oxidative stress activates a p53 pathway that ultimately leads to the release of mitochondria-associated apoptotic molecules such as cytochrome C, and cleaved caspases 3 and 9. In a xenograft nude mouse model, a dose of 30 mg/kg of 6S or M2 was able to significantly decrease tumor burden, without any associated toxicity to the animals. This effect was correlated with an induction of apoptosis and reduction of cell proliferation in the tumor tissues. Taken together, our results show that 6S metabolism is an integral part of its anticancer activities in vitro and in vivo. This allows us to characterize M2 as a novel compound with superior in vivo chemopreventive properties that targets similar anticancer mechanisms as 6S. American Chemical Society 2014-01-21 2014-02-12 /pmc/articles/PMC3983336/ /pubmed/24446736 http://dx.doi.org/10.1021/jf405573e Text en Copyright © 2014 American Chemical Society
spellingShingle Warin, Renaud F.
Chen, Huadong
Soroka, Dominique N.
Zhu, Yingdong
Sang, Shengmin
Induction of Lung Cancer Cell Apoptosis through a p53 Pathway by [6]-Shogaol and Its Cysteine-Conjugated Metabolite M2
title Induction of Lung Cancer Cell Apoptosis through a p53 Pathway by [6]-Shogaol and Its Cysteine-Conjugated Metabolite M2
title_full Induction of Lung Cancer Cell Apoptosis through a p53 Pathway by [6]-Shogaol and Its Cysteine-Conjugated Metabolite M2
title_fullStr Induction of Lung Cancer Cell Apoptosis through a p53 Pathway by [6]-Shogaol and Its Cysteine-Conjugated Metabolite M2
title_full_unstemmed Induction of Lung Cancer Cell Apoptosis through a p53 Pathway by [6]-Shogaol and Its Cysteine-Conjugated Metabolite M2
title_short Induction of Lung Cancer Cell Apoptosis through a p53 Pathway by [6]-Shogaol and Its Cysteine-Conjugated Metabolite M2
title_sort induction of lung cancer cell apoptosis through a p53 pathway by [6]-shogaol and its cysteine-conjugated metabolite m2
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3983336/
https://www.ncbi.nlm.nih.gov/pubmed/24446736
http://dx.doi.org/10.1021/jf405573e
work_keys_str_mv AT warinrenaudf inductionoflungcancercellapoptosisthroughap53pathwayby6shogaolanditscysteineconjugatedmetabolitem2
AT chenhuadong inductionoflungcancercellapoptosisthroughap53pathwayby6shogaolanditscysteineconjugatedmetabolitem2
AT sorokadominiquen inductionoflungcancercellapoptosisthroughap53pathwayby6shogaolanditscysteineconjugatedmetabolitem2
AT zhuyingdong inductionoflungcancercellapoptosisthroughap53pathwayby6shogaolanditscysteineconjugatedmetabolitem2
AT sangshengmin inductionoflungcancercellapoptosisthroughap53pathwayby6shogaolanditscysteineconjugatedmetabolitem2