Cargando…
Stochastic variational learning in recurrent spiking networks
The ability to learn and perform statistical inference with biologically plausible recurrent networks of spiking neurons is an important step toward understanding perception and reasoning. Here we derive and investigate a new learning rule for recurrent spiking networks with hidden neurons, combinin...
Autores principales: | Jimenez Rezende, Danilo, Gerstner, Wulfram |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3983494/ https://www.ncbi.nlm.nih.gov/pubmed/24772078 http://dx.doi.org/10.3389/fncom.2014.00038 |
Ejemplares similares
-
Predicting non-linear dynamics by stable local learning in a recurrent spiking neural network
por: Gilra, Aditya, et al.
Publicado: (2017) -
Neuromodulated Spike-Timing-Dependent Plasticity, and Theory of Three-Factor Learning Rules
por: Frémaux, Nicolas, et al.
Publicado: (2016) -
Limits to high-speed simulations of spiking neural networks using general-purpose computers
por: Zenke, Friedemann, et al.
Publicado: (2014) -
From Hebb Rules to Spike-Timing-Dependent Plasticity: A Personal Account
por: Gerstner, Wulfram
Publicado: (2010) -
Voltage and Spike Timing Interact in STDP – A Unified Model
por: Clopath, Claudia, et al.
Publicado: (2010)