Cargando…
Graph-based active learning of agglomeration (GALA): a Python library to segment 2D and 3D neuroimages
The aim in high-resolution connectomics is to reconstruct complete neuronal connectivity in a tissue. Currently, the only technology capable of resolving the smallest neuronal processes is electron microscopy (EM). Thus, a common approach to network reconstruction is to perform (error-prone) automat...
Autores principales: | Nunez-Iglesias, Juan, Kennedy, Ryan, Plaza, Stephen M., Chakraborty, Anirban, Katz, William T. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3983515/ https://www.ncbi.nlm.nih.gov/pubmed/24772079 http://dx.doi.org/10.3389/fninf.2014.00034 |
Ejemplares similares
-
A Context-Aware Delayed Agglomeration Framework for Electron Microscopy Segmentation
por: Parag, Toufiq, et al.
Publicado: (2015) -
Gala
por: Bona, Dominique 1953-
Publicado: (1996) -
GOGrapher: A Python library for GO graph representation and analysis
por: Muller, Brian, et al.
Publicado: (2009) -
Analyzing microtomography data with Python and the scikit-image library
por: Gouillart, Emmanuelle, et al.
Publicado: (2016) -
Gala presentations
por: KURIKKA, Joona Juhani
Publicado: (2015)