Cargando…
Investigating the role of superdiffusive currents in laser induced demagnetization of ferromagnets with nanoscale magnetic domains
Understanding the loss of magnetic order and the microscopic mechanisms involved in laser induced magnetization dynamics is one of the most challenging topics in today's magnetism research. While scattering between spins, phonons, magnons and electrons have been proposed as sources for dissipat...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3983600/ https://www.ncbi.nlm.nih.gov/pubmed/24722395 http://dx.doi.org/10.1038/srep04658 |
_version_ | 1782311350491414528 |
---|---|
author | Moisan, N. Malinowski, G. Mauchain, J. Hehn, M. Vodungbo, B. Lüning, J. Mangin, S. Fullerton, E. E. Thiaville, A. |
author_facet | Moisan, N. Malinowski, G. Mauchain, J. Hehn, M. Vodungbo, B. Lüning, J. Mangin, S. Fullerton, E. E. Thiaville, A. |
author_sort | Moisan, N. |
collection | PubMed |
description | Understanding the loss of magnetic order and the microscopic mechanisms involved in laser induced magnetization dynamics is one of the most challenging topics in today's magnetism research. While scattering between spins, phonons, magnons and electrons have been proposed as sources for dissipation of spin angular momentum, ultrafast spin dependent transport of hot electrons has been pointed out as a potential candidate to explain ultrafast demagnetization without resorting to any spin dissipation channel. Here we use time resolved magneto-optical Kerr measurements to extract the influence of spin dependent transport on the demagnetization dynamics taking place in magnetic samples with alternating domains with opposite magnetization directions. We unambiguously show that whatever the sample magnetic configuration, the demagnetization takes place during the same time, demonstrating that hot electrons spin dependent transfer between neighboring domains does not alter the ultrafast magnetization dynamics in our systems with perpendicular anisotropy and 140 nm domain sizes. |
format | Online Article Text |
id | pubmed-3983600 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-39836002014-04-11 Investigating the role of superdiffusive currents in laser induced demagnetization of ferromagnets with nanoscale magnetic domains Moisan, N. Malinowski, G. Mauchain, J. Hehn, M. Vodungbo, B. Lüning, J. Mangin, S. Fullerton, E. E. Thiaville, A. Sci Rep Article Understanding the loss of magnetic order and the microscopic mechanisms involved in laser induced magnetization dynamics is one of the most challenging topics in today's magnetism research. While scattering between spins, phonons, magnons and electrons have been proposed as sources for dissipation of spin angular momentum, ultrafast spin dependent transport of hot electrons has been pointed out as a potential candidate to explain ultrafast demagnetization without resorting to any spin dissipation channel. Here we use time resolved magneto-optical Kerr measurements to extract the influence of spin dependent transport on the demagnetization dynamics taking place in magnetic samples with alternating domains with opposite magnetization directions. We unambiguously show that whatever the sample magnetic configuration, the demagnetization takes place during the same time, demonstrating that hot electrons spin dependent transfer between neighboring domains does not alter the ultrafast magnetization dynamics in our systems with perpendicular anisotropy and 140 nm domain sizes. Nature Publishing Group 2014-04-11 /pmc/articles/PMC3983600/ /pubmed/24722395 http://dx.doi.org/10.1038/srep04658 Text en Copyright © 2014, Macmillan Publishers Limited. All rights reserved http://creativecommons.org/licenses/by-nc-nd/3.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. The images in this article are included in the article's Creative Commons license, unless indicated otherwise in the image credit; if the image is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the image. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ |
spellingShingle | Article Moisan, N. Malinowski, G. Mauchain, J. Hehn, M. Vodungbo, B. Lüning, J. Mangin, S. Fullerton, E. E. Thiaville, A. Investigating the role of superdiffusive currents in laser induced demagnetization of ferromagnets with nanoscale magnetic domains |
title | Investigating the role of superdiffusive currents in laser induced demagnetization of ferromagnets with nanoscale magnetic domains |
title_full | Investigating the role of superdiffusive currents in laser induced demagnetization of ferromagnets with nanoscale magnetic domains |
title_fullStr | Investigating the role of superdiffusive currents in laser induced demagnetization of ferromagnets with nanoscale magnetic domains |
title_full_unstemmed | Investigating the role of superdiffusive currents in laser induced demagnetization of ferromagnets with nanoscale magnetic domains |
title_short | Investigating the role of superdiffusive currents in laser induced demagnetization of ferromagnets with nanoscale magnetic domains |
title_sort | investigating the role of superdiffusive currents in laser induced demagnetization of ferromagnets with nanoscale magnetic domains |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3983600/ https://www.ncbi.nlm.nih.gov/pubmed/24722395 http://dx.doi.org/10.1038/srep04658 |
work_keys_str_mv | AT moisann investigatingtheroleofsuperdiffusivecurrentsinlaserinduceddemagnetizationofferromagnetswithnanoscalemagneticdomains AT malinowskig investigatingtheroleofsuperdiffusivecurrentsinlaserinduceddemagnetizationofferromagnetswithnanoscalemagneticdomains AT mauchainj investigatingtheroleofsuperdiffusivecurrentsinlaserinduceddemagnetizationofferromagnetswithnanoscalemagneticdomains AT hehnm investigatingtheroleofsuperdiffusivecurrentsinlaserinduceddemagnetizationofferromagnetswithnanoscalemagneticdomains AT vodungbob investigatingtheroleofsuperdiffusivecurrentsinlaserinduceddemagnetizationofferromagnetswithnanoscalemagneticdomains AT luningj investigatingtheroleofsuperdiffusivecurrentsinlaserinduceddemagnetizationofferromagnetswithnanoscalemagneticdomains AT mangins investigatingtheroleofsuperdiffusivecurrentsinlaserinduceddemagnetizationofferromagnetswithnanoscalemagneticdomains AT fullertonee investigatingtheroleofsuperdiffusivecurrentsinlaserinduceddemagnetizationofferromagnetswithnanoscalemagneticdomains AT thiavillea investigatingtheroleofsuperdiffusivecurrentsinlaserinduceddemagnetizationofferromagnetswithnanoscalemagneticdomains |