Cargando…
Genome-wide incorporation dynamics reveal distinct categories of turnover for the histone variant H3.3
BACKGROUND: Nucleosomes are present throughout the genome and must be dynamically regulated to accommodate binding of transcription factors and RNA polymerase machineries by various mechanisms. Despite the development of protocols and techniques that have enabled us to map nucleosome occupancy genom...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3983652/ https://www.ncbi.nlm.nih.gov/pubmed/24176123 http://dx.doi.org/10.1186/gb-2013-14-10-r121 |
_version_ | 1782311353692717056 |
---|---|
author | Kraushaar, Daniel C Jin, Wenfei Maunakea, Alika Abraham, Brian Ha, Misook Zhao, Keji |
author_facet | Kraushaar, Daniel C Jin, Wenfei Maunakea, Alika Abraham, Brian Ha, Misook Zhao, Keji |
author_sort | Kraushaar, Daniel C |
collection | PubMed |
description | BACKGROUND: Nucleosomes are present throughout the genome and must be dynamically regulated to accommodate binding of transcription factors and RNA polymerase machineries by various mechanisms. Despite the development of protocols and techniques that have enabled us to map nucleosome occupancy genome-wide, the dynamic properties of nucleosomes remain poorly understood, particularly in mammalian cells. The histone variant H3.3 is incorporated into chromatin independently of DNA replication and requires displacement of existing nucleosomes for its deposition. Here, we measure H3.3 turnover at high resolution in the mammalian genome in order to present a genome-wide characterization of replication-independent H3.3-nucleosome dynamics. RESULTS: We developed a system to study the DNA replication-independent turnover of nucleosomes containing the histone variant H3.3 in mammalian cells. By measuring the genome-wide incorporation of H3.3 at different time points following epitope-tagged H3.3 expression, we find three categories of H3.3-nucleosome turnover in vivo: rapid turnover, intermediate turnover and, specifically at telomeres, slow turnover. Our data indicate that H3.3-containing nucleosomes at enhancers and promoters undergo rapid turnover that is associated with active histone modification marks including H3K4me1, H3K4me3, H3K9ac, H3K27ac and the histone variant H2A.Z. The rate of turnover is negatively correlated with H3K27me3 at regulatory regions and with H3K36me3 at gene bodies. CONCLUSIONS: We have established a reliable approach to measure turnover rates of H3.3-containing nucleosomes on a genome-wide level in mammalian cells. Our results suggest that distinct mechanisms control the dynamics of H3.3 incorporation at functionally different genomic regions. |
format | Online Article Text |
id | pubmed-3983652 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-39836522014-04-12 Genome-wide incorporation dynamics reveal distinct categories of turnover for the histone variant H3.3 Kraushaar, Daniel C Jin, Wenfei Maunakea, Alika Abraham, Brian Ha, Misook Zhao, Keji Genome Biol Research BACKGROUND: Nucleosomes are present throughout the genome and must be dynamically regulated to accommodate binding of transcription factors and RNA polymerase machineries by various mechanisms. Despite the development of protocols and techniques that have enabled us to map nucleosome occupancy genome-wide, the dynamic properties of nucleosomes remain poorly understood, particularly in mammalian cells. The histone variant H3.3 is incorporated into chromatin independently of DNA replication and requires displacement of existing nucleosomes for its deposition. Here, we measure H3.3 turnover at high resolution in the mammalian genome in order to present a genome-wide characterization of replication-independent H3.3-nucleosome dynamics. RESULTS: We developed a system to study the DNA replication-independent turnover of nucleosomes containing the histone variant H3.3 in mammalian cells. By measuring the genome-wide incorporation of H3.3 at different time points following epitope-tagged H3.3 expression, we find three categories of H3.3-nucleosome turnover in vivo: rapid turnover, intermediate turnover and, specifically at telomeres, slow turnover. Our data indicate that H3.3-containing nucleosomes at enhancers and promoters undergo rapid turnover that is associated with active histone modification marks including H3K4me1, H3K4me3, H3K9ac, H3K27ac and the histone variant H2A.Z. The rate of turnover is negatively correlated with H3K27me3 at regulatory regions and with H3K36me3 at gene bodies. CONCLUSIONS: We have established a reliable approach to measure turnover rates of H3.3-containing nucleosomes on a genome-wide level in mammalian cells. Our results suggest that distinct mechanisms control the dynamics of H3.3 incorporation at functionally different genomic regions. BioMed Central 2013 2013-10-31 /pmc/articles/PMC3983652/ /pubmed/24176123 http://dx.doi.org/10.1186/gb-2013-14-10-r121 Text en Copyright © 2013 Kraushaar et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Kraushaar, Daniel C Jin, Wenfei Maunakea, Alika Abraham, Brian Ha, Misook Zhao, Keji Genome-wide incorporation dynamics reveal distinct categories of turnover for the histone variant H3.3 |
title | Genome-wide incorporation dynamics reveal distinct categories of turnover for the histone variant H3.3 |
title_full | Genome-wide incorporation dynamics reveal distinct categories of turnover for the histone variant H3.3 |
title_fullStr | Genome-wide incorporation dynamics reveal distinct categories of turnover for the histone variant H3.3 |
title_full_unstemmed | Genome-wide incorporation dynamics reveal distinct categories of turnover for the histone variant H3.3 |
title_short | Genome-wide incorporation dynamics reveal distinct categories of turnover for the histone variant H3.3 |
title_sort | genome-wide incorporation dynamics reveal distinct categories of turnover for the histone variant h3.3 |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3983652/ https://www.ncbi.nlm.nih.gov/pubmed/24176123 http://dx.doi.org/10.1186/gb-2013-14-10-r121 |
work_keys_str_mv | AT kraushaardanielc genomewideincorporationdynamicsrevealdistinctcategoriesofturnoverforthehistonevarianth33 AT jinwenfei genomewideincorporationdynamicsrevealdistinctcategoriesofturnoverforthehistonevarianth33 AT maunakeaalika genomewideincorporationdynamicsrevealdistinctcategoriesofturnoverforthehistonevarianth33 AT abrahambrian genomewideincorporationdynamicsrevealdistinctcategoriesofturnoverforthehistonevarianth33 AT hamisook genomewideincorporationdynamicsrevealdistinctcategoriesofturnoverforthehistonevarianth33 AT zhaokeji genomewideincorporationdynamicsrevealdistinctcategoriesofturnoverforthehistonevarianth33 |