Cargando…
An Attractor-Based Complexity Measurement for Boolean Recurrent Neural Networks
We provide a novel refined attractor-based complexity measurement for Boolean recurrent neural networks that represents an assessment of their computational power in terms of the significance of their attractor dynamics. This complexity measurement is achieved by first proving a computational equiva...
Autores principales: | Cabessa, Jérémie, Villa, Alessandro E. P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3984152/ https://www.ncbi.nlm.nih.gov/pubmed/24727866 http://dx.doi.org/10.1371/journal.pone.0094204 |
Ejemplares similares
-
Exploring attractor bifurcations in Boolean networks
por: Beneš, Nikola, et al.
Publicado: (2022) -
Algorithms and Complexity Analyses for Control of Singleton Attractors in Boolean Networks
por: Hayashida, Morihiro, et al.
Publicado: (2008) -
Algorithms for Finding Small Attractors in Boolean Networks
por: Zhang, Shu-Qin, et al.
Publicado: (2007) -
Attractor detection and enumeration algorithms for Boolean networks
por: Mori, Tomoya, et al.
Publicado: (2022) -
Robustness and Information Propagation in Attractors of Random Boolean Networks
por: Lloyd-Price, Jason, et al.
Publicado: (2012)