Cargando…
Ca(2+) Binding Enhanced Mechanical Stability of an Archaeal Crystallin
Structural topology plays an important role in protein mechanical stability. Proteins with β-sandwich topology consisting of Greek key structural motifs, for example, I27 of muscle titin and (10)FNIII of fibronectin, are mechanically resistant as shown by single-molecule force spectroscopy (SMFS). I...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3984160/ https://www.ncbi.nlm.nih.gov/pubmed/24728085 http://dx.doi.org/10.1371/journal.pone.0094513 |
Sumario: | Structural topology plays an important role in protein mechanical stability. Proteins with β-sandwich topology consisting of Greek key structural motifs, for example, I27 of muscle titin and (10)FNIII of fibronectin, are mechanically resistant as shown by single-molecule force spectroscopy (SMFS). In proteins with β-sandwich topology, if the terminal strands are directly connected by backbone H-bonding then this geometry can serve as a “mechanical clamp”. Proteins with this geometry are shown to have very high unfolding forces. Here, we set out to explore the mechanical properties of a protein, M-crystallin, which belongs to β-sandwich topology consisting of Greek key motifs but its overall structure lacks the “mechanical clamp” geometry at the termini. M-crystallin is a Ca(2+) binding protein from Methanosarcina acetivorans that is evolutionarily related to the vertebrate eye lens β and γ-crystallins. We constructed an octamer of crystallin, (M-crystallin)(8), and using SMFS, we show that M-crystallin unfolds in a two-state manner with an unfolding force ∼90 pN (at a pulling speed of 1000 nm/sec), which is much lower than that of I27. Our study highlights that the β-sandwich topology proteins with a different strand-connectivity than that of I27 and (10)FNIII, as well as lacking “mechanical clamp” geometry, can be mechanically resistant. Furthermore, Ca(2+) binding not only stabilizes M-crystallin by 11.4 kcal/mol but also increases its unfolding force by ∼35 pN at the same pulling speed. The differences in the mechanical properties of apo and holo M-crystallins are further characterized using pulling speed dependent measurements and they show that Ca(2+) binding reduces the unfolding potential width from 0.55 nm to 0.38 nm. These results are explained using a simple two-state unfolding energy landscape. |
---|