Cargando…

A Unique Co-culture Model for Fundamental and Applied Studies of Human Fetoplacental Steroidogenesis and Interference by Environmental Chemicals

Background: Experimental tools for studying the complex steroidogenic interactions that occur between placenta and fetus during human pregnancy are extremely limited. Objectives: We aimed to develop a co-culture model to study steroidogenesis by the human fetoplacental unit and its disruption by exp...

Descripción completa

Detalles Bibliográficos
Autores principales: Thibeault, Andrée-Anne Hudon, Deroy, Kathy, Vaillancourt, Cathy, Sanderson, J. Thomas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Institute of Environmental Health Sciences 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3984223/
https://www.ncbi.nlm.nih.gov/pubmed/24486430
http://dx.doi.org/10.1289/ehp.1307518
Descripción
Sumario:Background: Experimental tools for studying the complex steroidogenic interactions that occur between placenta and fetus during human pregnancy are extremely limited. Objectives: We aimed to develop a co-culture model to study steroidogenesis by the human fetoplacental unit and its disruption by exposure to environmental contaminants. Methods: We cultured BeWo human choriocarcinoma cells, representing the villous cytotrophoblast, and H295R human adrenocortical carcinoma cells, representing the fetal unit, in a carefully adapted co-culture medium. We placed H295R cells in 24-well plates and BeWo cells on transwell inserts with or without pesticide treatment (atrazine or prochloraz) and assessed CYP19 activity and hormonal production after 24 hr of co-culture. Results: The co-culture exhibited the steroidogenic profile of the fetoplacental unit, allowing a synergistic production of estradiol and estriol (but not of estrone) of 133.3 ± 11.3 pg/mL and 440.8 ± 44.0 pg/mL, respectively. Atrazine and prochloraz had cell-type specific effects on CYP19 activity and estrogen production in co-culture. Atrazine induced CYP19 activity and estrogen production in H295R cells only, but did not affect overall estrogen production in co-culture, whereas prochloraz inhibited CYP19 activity exclusively in BeWo cells and reduced estrogen production in co-culture by almost 90%. In contrast, prochloraz did not affect estradiol or estrone production in BeWo cells in monoculture. These differential effects underline the relevance of our co-culture approach to model fetoplacental steroidogenesis. Conclusions: The co-culture of H295R and BeWo cells creates a unique in vitro model to reproduce the steroidogenic cooperation between fetus and placenta during pregnancy and can be used to study the endocrine-disrupting effects of environmental chemicals. Citation: Hudon Thibeault AA, Deroy K, Vaillancourt C, Sanderson JT. 2014. A unique co-culture model for fundamental and applied studies of human fetoplacental steroidogenesis and interference by environmental chemicals. Environ Health Perspect 122:371–377; http://dx.doi.org/10.1289/ehp.1307518