Cargando…

Bioactive nanocomposite PLDL/nano-hydroxyapatite electrospun membranes for bone tissue engineering

New nanocomposite membranes with high bioactivity were fabricated using the electrospinning. These nanocomposites combine a degradable polymer poly(l/dl)-lactide and bone cell signaling carbonate nano-hydroxyapatite (n-HAp). Chemical and physical characterization of the membranes using scanning elec...

Descripción completa

Detalles Bibliográficos
Autores principales: Rajzer, Izabella, Menaszek, Elżbieta, Kwiatkowski, Ryszard, Chrzanowski, Wojciech
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3984671/
https://www.ncbi.nlm.nih.gov/pubmed/24458535
http://dx.doi.org/10.1007/s10856-014-5149-9
Descripción
Sumario:New nanocomposite membranes with high bioactivity were fabricated using the electrospinning. These nanocomposites combine a degradable polymer poly(l/dl)-lactide and bone cell signaling carbonate nano-hydroxyapatite (n-HAp). Chemical and physical characterization of the membranes using scanning electron microscopy, Fourier transform infrared spectroscopy and the wide angle X-ray diffraction evidenced that nanoparticles were successfully incorporated into the fibers and membrane structure. The incorporation of the n-HAp into the structure increased significantly the mineralization of the membrane in vitro. It has been demonstrated that after a 3-day incubation of composite membrane in the Simulated Body Fluid a continuous compact apatite layer was formed. In vitro experiments demonstrated that the incorporation of n-HAp significantly improved cell attachment, upregulated cells proliferation and stimulated cell differentiation quantified using Alkaline Phosphatase and OsteoImage tests. In conclusion, the results demonstrated that the addition of n-HAp provided chemical cues that were a key factor that regulated osteoblastic differentiation.