Cargando…

Tissue specific expression of Myosin IC Isoforms

BACKGROUND: Myosin IC is a single headed member of the myosin superfamily that localizes to the cytoplasm and the nucleus and is implicated in a variety of processes in both compartments. We recently identified a novel isoform of myosin IC and showed that the MYOIC gene in mammalian cells encodes th...

Descripción completa

Detalles Bibliográficos
Autores principales: Sielski, Neil L, Ihnatovych, Ivanna, Hagen, Jacob J, Hofmann, Wilma A
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3984714/
https://www.ncbi.nlm.nih.gov/pubmed/24618359
http://dx.doi.org/10.1186/1471-2121-15-8
Descripción
Sumario:BACKGROUND: Myosin IC is a single headed member of the myosin superfamily that localizes to the cytoplasm and the nucleus and is implicated in a variety of processes in both compartments. We recently identified a novel isoform of myosin IC and showed that the MYOIC gene in mammalian cells encodes three isoforms (isoforms A, B, and C) that differ only in the addition of short isoform-specific N-terminal peptides. The expression pattern of the isoforms and the mechanisms of expression regulation remain unknown. RESULTS: To determine the expression patterns of myosin IC isoforms, we performed a comprehensive expression analysis of the two myosin IC isoforms (isoform A and B) that contain isoform-specific sequences. By immunoblotting with isoform-specific antibodies and by qRT-PCR with isoform-specific primer we demonstrate that myosin IC isoforms A and B have distinct expression patterns in mouse tissues. Specifically, we show that myosin IC isoform A is expressed in a tissue specific pattern, while myosin IC isoform B is ubiquitously expressed at comparable levels in mouse tissues. CONCLUSIONS: The differences in the expression profile of the myosin IC isoforms indicate a tissue-specific MYOIC gene regulation and further suggest that the myosin IC isoforms, despite their high sequence homology, might have tissue-specific and isoform-specific functions.