Cargando…
Support Vector Machine Based on Adaptive Acceleration Particle Swarm Optimization
Existing face recognition methods utilize particle swarm optimizer (PSO) and opposition based particle swarm optimizer (OPSO) to optimize the parameters of SVM. However, the utilization of random values in the velocity calculation decreases the performance of these techniques; that is, during the ve...
Autores principales: | Abdulameer, Mohammed Hasan, Sheikh Abdullah, Siti Norul Huda, Othman, Zulaiha Ali |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3984833/ https://www.ncbi.nlm.nih.gov/pubmed/24790584 http://dx.doi.org/10.1155/2014/835607 |
Ejemplares similares
-
A Modified Active Appearance Model Based on an Adaptive Artificial Bee Colony
por: Abdulameer, Mohammed Hasan, et al.
Publicado: (2014) -
Prediction of Skin Sensitization with a Particle Swarm Optimized Support Vector Machine
por: Yuan, Hua, et al.
Publicado: (2009) -
Classification of Motor Imagery EEG Signals with Support Vector Machines and Particle Swarm Optimization
por: Ma, Yuliang, et al.
Publicado: (2016) -
Cancer Classification Based on Support Vector Machine Optimized by Particle Swarm Optimization and Artificial Bee Colony
por: Gao, Lingyun, et al.
Publicado: (2017) -
Comparison of support vector machines based on particle swarm optimization and genetic algorithm in sleep staging
por: Geng, Duyan, et al.
Publicado: (2019)