Cargando…
EEG Channel Selection Using Particle Swarm Optimization for the Classification of Auditory Event-Related Potentials
Brain-machine interfaces (BMI) rely on the accurate classification of event-related potentials (ERPs) and their performance greatly depends on the appropriate selection of classifier parameters and features from dense-array electroencephalography (EEG) signals. Moreover, in order to achieve a portab...
Autores principales: | Gonzalez, Alejandro, Nambu, Isao, Hokari, Haruhide, Wada, Yasuhiro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3984837/ https://www.ncbi.nlm.nih.gov/pubmed/24982944 http://dx.doi.org/10.1155/2014/350270 |
Ejemplares similares
-
Estimating the Intended Sound Direction of the User: Toward an Auditory Brain-Computer Interface Using Out-of-Head Sound Localization
por: Nambu, Isao, et al.
Publicado: (2013) -
Improving the Performance of an Auditory Brain-Computer Interface Using Virtual Sound Sources by Shortening Stimulus Onset Asynchrony
por: Sugi, Miho, et al.
Publicado: (2018) -
Classification of Motor Imagery EEG Signals with Support Vector Machines and Particle Swarm Optimization
por: Ma, Yuliang, et al.
Publicado: (2016) -
Chaotic Particle Swarm Optimization with Mutation for Classification
por: Assarzadeh, Zahra, et al.
Publicado: (2015) -
Selectively-informed particle swarm optimization
por: Gao, Yang, et al.
Publicado: (2015)