Cargando…

Neuroprotective Effect of Thymoquinone, the Nigella Sativa Bioactive Compound, in 6-Hydroxydopamine-Induced Hemi-Parkinsonian Rat Model

Parkinson disease (PD) is the most common movement disorder with progressive degeneration of midbrain dopaminergic neurons for which current treatments afford symptomatic relief with no-prevention of disease progression. Due to the neuroprotective property of the Nigella sativa bioactive compound th...

Descripción completa

Detalles Bibliográficos
Autores principales: Sedaghat, Reza, Roghani, Mehrdad, Khalili, Mohsen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Shaheed Beheshti University of Medical Sciences 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3985249/
https://www.ncbi.nlm.nih.gov/pubmed/24734075
_version_ 1782311546147307520
author Sedaghat, Reza
Roghani, Mehrdad
Khalili, Mohsen
author_facet Sedaghat, Reza
Roghani, Mehrdad
Khalili, Mohsen
author_sort Sedaghat, Reza
collection PubMed
description Parkinson disease (PD) is the most common movement disorder with progressive degeneration of midbrain dopaminergic neurons for which current treatments afford symptomatic relief with no-prevention of disease progression. Due to the neuroprotective property of the Nigella sativa bioactive compound thymoquinone (TQ), this study was undertaken to evaluate whether TQ could improve behavioral and cellular abnormalities and markers of oxidative stress in an experimental model of early PD in rat. Unilateral intrastriatal 6-hydroxydopamine (6-OHDA)-lesioned rats were daily pretreated p.o. with TQ at doses of 5 and/or 10 mg/Kg three times at an interval of 24 h. After 1 week, apomorphine caused contralateral rotations, a reduction in the number of neurons on the left side of the substantia nigra pars compacta (SNC) was observed, malondialdehyde (MDA) and nitrite level in midbrain homogenate increased and activity of superoxide dismutase (SOD) reduced in the 6-OHDA lesion group. TQ pretreatment significantly improved turning behavior, prevented loss of SNC neurons, and lowered level of MDA. These results suggest that TQ could afford neuroprotection against 6-OHDA neurotoxicity that is partly due to the attenuation of lipid peroxidation and this may provide benefits, along with other therapies, in neurodegenerative disorders including PD.
format Online
Article
Text
id pubmed-3985249
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Shaheed Beheshti University of Medical Sciences
record_format MEDLINE/PubMed
spelling pubmed-39852492014-04-14 Neuroprotective Effect of Thymoquinone, the Nigella Sativa Bioactive Compound, in 6-Hydroxydopamine-Induced Hemi-Parkinsonian Rat Model Sedaghat, Reza Roghani, Mehrdad Khalili, Mohsen Iran J Pharm Res Original Article Parkinson disease (PD) is the most common movement disorder with progressive degeneration of midbrain dopaminergic neurons for which current treatments afford symptomatic relief with no-prevention of disease progression. Due to the neuroprotective property of the Nigella sativa bioactive compound thymoquinone (TQ), this study was undertaken to evaluate whether TQ could improve behavioral and cellular abnormalities and markers of oxidative stress in an experimental model of early PD in rat. Unilateral intrastriatal 6-hydroxydopamine (6-OHDA)-lesioned rats were daily pretreated p.o. with TQ at doses of 5 and/or 10 mg/Kg three times at an interval of 24 h. After 1 week, apomorphine caused contralateral rotations, a reduction in the number of neurons on the left side of the substantia nigra pars compacta (SNC) was observed, malondialdehyde (MDA) and nitrite level in midbrain homogenate increased and activity of superoxide dismutase (SOD) reduced in the 6-OHDA lesion group. TQ pretreatment significantly improved turning behavior, prevented loss of SNC neurons, and lowered level of MDA. These results suggest that TQ could afford neuroprotection against 6-OHDA neurotoxicity that is partly due to the attenuation of lipid peroxidation and this may provide benefits, along with other therapies, in neurodegenerative disorders including PD. Shaheed Beheshti University of Medical Sciences 2014 /pmc/articles/PMC3985249/ /pubmed/24734075 Text en © 2014 by School of Pharmacy, Shaheed Beheshti University of Medical Sciences and Health Services This is an Open Access article distributed under the terms of the Creative Commons Attribution License, (http://creativecommons.org/licenses/by/3.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Article
Sedaghat, Reza
Roghani, Mehrdad
Khalili, Mohsen
Neuroprotective Effect of Thymoquinone, the Nigella Sativa Bioactive Compound, in 6-Hydroxydopamine-Induced Hemi-Parkinsonian Rat Model
title Neuroprotective Effect of Thymoquinone, the Nigella Sativa Bioactive Compound, in 6-Hydroxydopamine-Induced Hemi-Parkinsonian Rat Model
title_full Neuroprotective Effect of Thymoquinone, the Nigella Sativa Bioactive Compound, in 6-Hydroxydopamine-Induced Hemi-Parkinsonian Rat Model
title_fullStr Neuroprotective Effect of Thymoquinone, the Nigella Sativa Bioactive Compound, in 6-Hydroxydopamine-Induced Hemi-Parkinsonian Rat Model
title_full_unstemmed Neuroprotective Effect of Thymoquinone, the Nigella Sativa Bioactive Compound, in 6-Hydroxydopamine-Induced Hemi-Parkinsonian Rat Model
title_short Neuroprotective Effect of Thymoquinone, the Nigella Sativa Bioactive Compound, in 6-Hydroxydopamine-Induced Hemi-Parkinsonian Rat Model
title_sort neuroprotective effect of thymoquinone, the nigella sativa bioactive compound, in 6-hydroxydopamine-induced hemi-parkinsonian rat model
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3985249/
https://www.ncbi.nlm.nih.gov/pubmed/24734075
work_keys_str_mv AT sedaghatreza neuroprotectiveeffectofthymoquinonethenigellasativabioactivecompoundin6hydroxydopamineinducedhemiparkinsonianratmodel
AT roghanimehrdad neuroprotectiveeffectofthymoquinonethenigellasativabioactivecompoundin6hydroxydopamineinducedhemiparkinsonianratmodel
AT khalilimohsen neuroprotectiveeffectofthymoquinonethenigellasativabioactivecompoundin6hydroxydopamineinducedhemiparkinsonianratmodel