Cargando…

Genome sequence of type strain of Staphylococcus aureus subsp. aureus

BACKGROUND: Staphylococcus aureus is a pathogen that causes food poisoning and community-associated infection with antibiotic resistance. This species is an indigenous intestinal microbe found in infants and not found in adult intestine. The relatively small genome size and rapid evolution of antibi...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Bong-Soo, Yi, Hana, Chun, Jongsik, Cha, Chang-Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3985588/
https://www.ncbi.nlm.nih.gov/pubmed/24628867
http://dx.doi.org/10.1186/1757-4749-6-6
Descripción
Sumario:BACKGROUND: Staphylococcus aureus is a pathogen that causes food poisoning and community-associated infection with antibiotic resistance. This species is an indigenous intestinal microbe found in infants and not found in adult intestine. The relatively small genome size and rapid evolution of antibiotic resistance genes in the species have been drawing an increasing attention in public health. To extend our understanding of the species and use the genome data for comparative genomic studies, we sequenced the type strain of S. aureus subsp. aureus DSM 20231(T). RESULTS: Seventeen contigs were generated using hybrid assembly of sequences derived from the Roche 454 and Illumina systems. The length of the genome sequence was 2,902,619 bases with a G + C content of 32.8%. Among the 2,550 annotated CDSs, 44 CDSs were annotated to antibiotic resistance genes and 13 CDSs were related to methicillin resistance. It is interesting to note that this strain was first isolated in 1884 before methicillin was generally used on patients. CONCLUSIONS: The present study analyzed the genome sequence of S. aureus subsp. aureus type strain as the reference sequence for comparative genomic analyses of clinical isolates. Methicillin resistance genes found in the genome indicate the presence of antibiotic resistance mechanism prior to the usage of antibiotics. Further comparative genomic studies of methicillin-resistant strains based on this reference genome would help to understand the evolution of resistance mechanism and dissemination of resistance genes.